

ResT: An Efficient Transformer for Visual Recognition

Presenter: Qing-Long Zhang

Content

- **<u>01</u>** Introduction
- <u>02</u> ResT
- **<u>03</u>** Conclusion

Introduction

• ViT

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." (ICLR2021)

Introduction

• ViT

Transformer Encoder

Patches

Let $x \in \mathbb{R}^{n \times d_m}$ be the input token, the output of each block y = x' + FFN(LN(x')), and x' = x + MSA(LN(x)) (1) In MSA, x is split into k heads, each with size $n \times d_k$, then the results of one head can be represented as $SA(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = Softmax(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}})\mathbf{V}$ (2)

FFN contains 2 linear layers with a non-linearity activation $FFN(x) = \sigma(xW_1 + b_1)W_2 + b_2 \qquad (3)$

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." (ICLR2021)

Introduction

- Shortcomings of ViT
 - Non-Overlapping Patch Embedding is difficult to extract the low-level features which form some fundamental structures in images.
 - Input token and PE are all of a fixed scale, unsuitable for dense prediction.
 - Computation of MSA is $O(2d_m n^2 + 4d_m^2 n)$, causing vast overheads for training and inference.
 - Each head in MSA is responsible for only a subset of embedding dims d_k , which may impair the performance of the network, particularly when the tokens embedding dimension (for each head) is short.

• Pipeline

Patch Embedding

- The patch embedding module creates a multi-scale pyramid of features by hierarchically expanding the channel capacity while reducing the spatial resolution with overlapping convolution operations.
- At the beginning of each stage, a standard Conv-3 with stride 2 and padding 1 is adopted to down-sample the spatial dimension by 4x and increase the channel dimension by 2x.
- The first Patch embedding module is applied with three consecutive Conv-3 with stride 2, 1, 2.

Positional Encoding

Let $x \in \mathbb{R}^{n \times d_m}$ be the input token, $\theta \in \mathbb{R}^{n \times d_m}$ be learnable parameters, PE in ViT can be represented as $\hat{x} = x + \theta$

If θ is related to x, then PE can be represented as

 $\hat{x} = x + \operatorname{GL}(x)$

PE can be further constructed as spatial attention

 $\hat{x} = x * \text{SpatialAttention}(x)$

Positional Encoding

Table 7: Com	parison of var	rious position
encoding (PE)	strategies on I	ResT-Lite.
Encoding	$T_{0}n_{-}1$ (%)	T_{0} (%)

Encoding	Top-1 (%)	Top-5 (%)
w/o position	71.54	89.82
+ LE	71.98	90.32
+ GL	72.04	90.41
+ PA	72.88	90.62

Patch Embedding & Positional Encoding

Since the input token in each stage is obtained by a convolutional operation, we can embed PE into the patch embedding module.

Table 6: Comparison of different reduction strategies of EMSA on ResT-Lite. Results show that Average Pooling can be an alternative to Depthwise Conv2d to make a trade-off.

Reduction	Top-1 (%)	Top-5 (%)
DWConv	72.88	90.62
Avg Pooling	72.64	90.41
Max Pooling	72.20	89.97

2021/11/25

• EMSA

Figure : Attention map visualization of the last blocks of stage 4 of the ResT-Lite.

Table 7: Ablation study results on the important design elements of EMSA on ResT-Lite, including the 1×1 convolution operation and Instance Normalization in Eq. 4.

Methods	Top-1 (%)	Top-5 (%)
origin	72.88	90.62
w/o IN	71.98	90.32
w/o Conv-1&IN	71.72	89.93

• EMSA vs. MSA

EMSA Computation: MSA Computation: $\mathcal{O}(\frac{2d_m n^2}{s^2} + 2d_m^2 n(1 + \frac{1}{s^2}))$ $\mathcal{O}(2d_m n^2 + 4d_m^2 n)$

Table 8: Comparison of MSA and EMSA.

Model	#Params (M)	FLOPs (G)	Throughput	Top-1 (%)	Top-5 (%)
MSA	10.48	1.6	512	72.68	90.46
EMSA	10.49	1.4	1246	72.88	90.62

• Architecture of ResT

Name	Output	Lite	Small	Base	Large	
stem	56×56	patch_	embed: Conv-3_C/2_2,	Conv-3_C/2_1, Conv	/-3_C_2,PA	
stage1	56×56	$\left[\begin{array}{c} EMSA_1_8\\ MLP_64 \end{array}\right];$	$\times 2 \left \left[\begin{array}{c} \text{EMSA_1_8} \\ \text{MLP_64} \end{array} \right] \times 2 \right $	$\left \left[\begin{array}{c} \text{EMSA_1_8} \\ \text{MLP_96} \end{array} \right] \times 2 \right.$	$\left[\begin{array}{c} \text{EMSA_1_8}\\ \text{MLP_96} \end{array}\right] \times 2$	
			patch_embed:	Conv-3_2C_2, PA		
stage2	28×28	$\begin{bmatrix} EMSA_2_4 \\ MLP_{128} \end{bmatrix}$	$\times 2 \left \left[\begin{array}{c} \text{EMSA}_2 \\ \text{MLP}_1 28 \end{array} \right] \times 2 \right.$	$\left \left[\begin{array}{c} \text{EMSA}_2_4\\ \text{MLP}_192 \end{array} \right] \times 2 \right.$	$\begin{bmatrix} EMSA_2_4\\MLP_192 \end{bmatrix} \times 2$	
	patch_embed: Conv-3_4C_2, PA					
stage3	14×14	$\left[\begin{array}{c} EMSA_4_2\\ MLP_256 \end{array}\right]$	$\times 2 \left \left[\begin{array}{c} \text{EMSA}_{4}2\\ \text{MLP}_{256} \end{array} \right] \times 6 \right.$	$ \begin{bmatrix} EMSA_4_2\\ MLP_384 \end{bmatrix} \times 6 $	$\begin{bmatrix} EMSA_4_2\\ MLP_384 \end{bmatrix} \times 18$	
	7×7		patch_embed:	Conv-3_8C_2, PA		
stage4		$\begin{bmatrix} EMSA_8_1\\ MLP_512 \end{bmatrix}$	$\times 2 \left \left[\begin{array}{c} \text{EMSA}_{8}_{1} \\ \text{MLP}_{512} \end{array} \right] \times 2 \right.$	$\left \left[\begin{array}{c} \text{EMSA_8_1} \\ \text{MLP_768} \end{array} \right] \times 2 \right.$	$\begin{bmatrix} EMSA_8_1\\ MLP_768 \end{bmatrix} \times 2$	
Classifier	$ 1 \times 1 $	average pool, 1000d fully-connected				
GFL	OPs	1.4	1.94	4.26	7.91	

NANULING UNIVERSIT	×1151	ResT						
•	Model	#Params (M)	FLOPs (G)	Throughput	Top-1 (%)	Top-5 (%)		
			ConvNet					
	ResNet-18 [10] ResNet-50 [10] ResNet-101 [10]	11.7 25.6 44.7	1.8 4.1 7.9	1852 871 635	69.7 79.0 80.3	89.1 94.4 95.2		
	RegNetY-4G [21] RegNetY-8G [21] RegNetY-16G [21]	20.6 39.2 83.6	4.0 8.0 15.9	1156 591 334	79.4 79.9 80.4	94.7 94.9 95.1		
	Transformer							
-	DeiT-S [25] DeiT-B [25]	4.6 17.6	940 292	79.8 81.8	94.9 95.6			
	PVT-T [28] PVT-S [28] PVT-M [28] PVT-I [28]	13.2 24.5 44.2 61.4	1.9 3.7 6.4 9.5	1038 820 526 367	75.1 79.8 81.2 81.7	92.4 94.9 95.6 95.9		
-	Swin-T [18] Swin-S [18] Swin-B [18]	28.29 49.61 87.77	4.5 8.7 15.4	755 437 278	81.3 83.3 83.5	95.5 96.2 96.5		
-	MViT-B-16 8	37.0	7.8	-	83.0			
	ResT-Lite (Ours) ResT-Small (Ours) ResT-Base (Ours) ResT-Large (Ours)	10.49 13.66 30.28 51.63	1.4 1.9 4.3 7.9	1246 1043 673 429	77.2 († 7.5) 79.6 († 9.9) 81.6 († 2.6) 83.6 († 3.3)	$\begin{array}{r} 93.7 (\uparrow 4.6) \\ 94.9 (\uparrow 5.8) \\ 95.7 (\uparrow 1.3) \\ 96.3 (\uparrow 1.1) \end{array}$		

• Object Detection on MS COCO

Table 3: Object detection performance on the COCO val2017 split using the RetinaNet framework.

Backbones	AP50:95	AP50	AP75	APs	APm	APl	Param (M)
R18 [10]	31.8	49.6	33.6	16.3	34.3	43.2	21.3
PVT-T 28	36.7	56.9	38.9	22.6	38.8	50.0	23.0
ResT-Small(Ours)	40.3	61.3	42.7	25.7	43.7	51.2	23.4
R50 10	37.4	56.7	40.3	23.1	41.6	48.3	37.9
PVT-S 28	40.4	61.3	43.0	25.0	42.9	55.7	34.2
Swin-T 18	41.5	62.1	44.1	27.0	44.2	53.2	38.5
ResT-Base (Ours)	42.0	63.2	44.8	29.1	45.3	53.3	40.5
R101 10	38.5	57.8	41.2	21.4	42.6	51.1	56.9
PVT-M [28]	41.9	63.1	44.3	25.0	44.9	57.6	53.9
Swin-S 18	44.5	65.7	47.5	27.4	48.0	59.9	59.8
ResT-Large (Ours)	44.8	66.1	48.0	28.3	48.7	60.3	61.8

- ✓ we proposed ResT, an efficient multi-scale vision Transformer, which produces hierarchical feature representations for dense prediction.
- ✓ We build a EMSA, which compresses the memory by a simple depth-wise convolution, and models the interaction across the attention-heads dimension while keeping the diversity ability of multi-heads
- ✓ Position encoding is constructed as spatial attention, which is more flexible and can tackle with input images of arbitrary size without interpolation or fine-tune.
- ✓ We design an effective stem module, which consists of a stack of overlapping convolution operations with stride on the token map.

Thank you!