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Introduction

Vision Transformer (ViT)

1
[
[ ( : )4_
MLP I
Ejad | MLP |
| ]
_ — | E' 2 E' — E E ! [ — ]
Zy) — [xclass Xp Xp "y Xp ] + pos |
I
. l r - \
Pm;n,gﬁ.;.;@ﬁ | [
#* Extra learnable I -
[class] embeddin Li Pr ti f Flatt d Patch { * }
g mear OJGC 10N O atene alcnes ! ) .
l T T 1 I : | Nomm |
W HxWxC— Nx (P*-C),where N =HW/P* \ ———
| Embedded
I | Patches ]

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image
recognition at scale." (ICLR2021)
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Introduction

VIT
Transfornier Encoder
(Lx @ Let z € R™*%phe the input token, the output of each block
YT y=x +FFN(LN(x')), and x'=x+ MSA(LN(x)) (1)
4 _ . .
Norm | In MSA, x is split into k heads, each with size n x d;. , then
the results of one head can be represented as
Mattontion. SA(Q. K, V) = Softmax(¥-)V 2)
Norm | FFN contains 2 linear layers with a non-linearity activation
r E;nbelc]lded ] FFN(X) = O'(XW1 + bl)WQ + by (3)
atches

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image
recognition at scale." (ICLR2021)
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Introduction

e Shortcomings of VIT

* Non-Overlapping Patch Embedding is difficult to extract the low-level
features which form some fundamental structures in images.

« Input token and PE are all of a fixed scale, unsuitable for dense prediction.

» Computation of MSA is O(2d,,n* + 4d?,n) , causing vast overheads for
training and inference.

« Each head in MSA is responsible for only a subset of embedding dimsd;, ,
which may impair the performance of the network, particularly when the
tokens embedding dimension (for each head) is short.
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ResT

« Patch Embedding

» The patch embedding module creates a multi-scale pyramid of features by
hierarchically expanding the channel capacity while reducing the spatial
resolution with overlapping convolution operations.

« At the beginning of each stage, a standard Conv-3 with stride 2 and
padding 1 is adopted to down-sample the spatial dimension by 4x and
Increase the channel dimension by 2x.

» The first Patch embedding module is applied with three consecutive Conv-
3 with stride 2, 1, 2.
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ResT

« Positional Encoding

Letz € R™* %= be the input token,d € R™*%be learnable parameters, PE in ViT

can be represented as — 40

=>

If 6is related to x, then PE can be represented as

z =2+ GL(x)

PE can be further constructed as spatial attention

T = x * Spatial Attention(x)
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ResT

« Positional Encoding

Table 7: Comparison of various position
encoding (PE) strategies on ResT-Lite.

Encoding Top-1 (%) Top-5 (%)

w/0 position 71.54 89.82
+ LE 71.98 90.32
+ GL 72.04 90.41
+ PA 72.88 90.62
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ResT

« Patch Embedding & Positional Encoding

Since the input token in each stage is obtained by a convolutional operation,

we can embed PE into the patch embedding module.

Efficient
L;x| Transformer
Embedded Block
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ResT

EMSA

n X dpy
; Linear Table 6: Comparison of different reduction strate-
o x d,, gies of EMSA on ResT-Lite. Results show that
Average Pooling can be an alternative to Depth-
[ : e LA I kx> di wise Conv2d to make a trade-off.
kxnxn 1 Reduction  Top-1 (%) Top-5 (%)
[ Conv + Softmax + IN DWConv 72.88 90.62
kxnxn' k xn' x dy )
[ o J Vo sk xd Avg Pooh-ng 72.64 90.41
ry 7 Max Pooling 72.20 89.97
kxnxd.|Q K| kxd. xn
n X dm|  Linear | | Linear | | Linear ]n." X dm
1 T wxd, 1
dn x h' xw'
DWConv + LN |
dp X h x w

X:nxdny,
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Figure : Attention map visualization of the last blocks of stage 4 of the ResT-L.ite.
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ResT

EMSA

n X dpy
Linear

Tn x o
| MatMul | kxnxd
kxnxn' | 1
[ Conv + Softmax + IN ]
kxnxn' v kfxn’xdk
[ MatMul + Scale J WX kX dy
kxnx d;.-AQ K‘ kxd. xn'
n X dm|  Linear | | Linear | | Linear ]n." X dm
/ T nxd, 1
dpm x ' x '
DWConv + LN |
dp X h x w
X:nxdn
2021/11/25

Table 7: Ablation study results on the important
design elements of EMSA on ResT-Lite, includ-
ing the 1 x 1 convolution operation and Instance
Normalization in Eq. 4|

Methods Top-1 (%) Top-5 (%)
origin 72.88 90.62
w/o IN 71.98 90.32
w/0 Conv-1&IN 71.72 89.93
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ResT

EMSA vs. MSA
EMSA Computation: MSA Compuation:
O(2 4 242 n(1 + %)) O(2d,,n? + 4d2,n)

Table 8: Comparison of MSA and EMSA.

Model #Params (M) FLOPs (G) Throughput Top-1 (%) Top-5 (%)
MSA 10.48 1.6 512 72.68 90.46
EMSA 10.49 1.4 1246 72.88 90.62
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ResT

Architecture of ResT

Name |Output | Lite | Small | Base | Large
stem |56 x 56| patch_embed: Conv-3_C/2_2, Conv-3_C/2_1, Conv-3_C_2.PA
sagel 156336 | Ui | <2/ “Mrper | 2| | “mreos | 2| | Miese |2
| | patch_embed: Conv-3_2C_2, PA
stage2 |28 x28|[ EMSA_2 4 | [ EMSA_2 4 | [ EMSA 2 4 [ EMSA_2 4 |
| MLP_128 | X2 | MLP_128 X2 | MLP_192 X2 | MLP_192 | x2
| | patch_embed: Conv-3_4C_2, PA
stage3 [14x 14|[ EMSA 4 2 ] [ EMSA_4 2 | EMSA_4 2 |[ EMSA_4 2
| MLP_256 | *?|| MLP_256 |*© [ MLP_384 ] 6 [ MLP_384 ]“8
| | patch_embed: Conv-3_8C_2, PA
staged | TXT TEMSA 8 11 | EMSA 8 1 EMSA_8 1 EMSA_8 1
| MLP_512 | X2 | MLP_S12 | X2 [ MLP_768 ]XZ [ MLP_768 ]><2
Classifier| 1 x 1 | average pool, 1000d fully-connected
GFLOPs | 1.4 | 1.94 | 4.26 | 7.91
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Model | #Params (M) | FLOPs (G) | Throughput | Top-1(%) | Top-5 (%)

ConvNet
ResNet-18 [10] 11.7 1.8 1852 69.7 89.1
ResNet-50 [10] 25.6 4.1 871 79.0 94.4
ResNet-101 [10] 44.7 7.9 635 80.3 095.2
RegNetY-4G [21] 20.6 4.0 1156 79.4 094.7
RegNetY-8G [21] 39.2 8.0 591 79.9 94.9
RegNetY-16G [21] 83.6 15.9 334 80.4 95.1
Transformer
DeiT-S [23]] 22.1 4.6 040 79.8 94.9
DeiT-B [25] 86.6 17.6 292 81.8 05.6
PVT-T [28] 13.2 1.9 1038 75.1 924
PVT-S [28] 24.5 3.7 820 79.8 04.9
PVT-M [28]] 44.2 6.4 526 81.2 95.6
PVT-L [28] 61.4 9.5 367 81.7 05.9
Swin-T [18]] 28.29 4.5 755 81.3 95.5
Swin-S [ 18] 49.61 8.7 437 83.3 06.2
Swin-B [18] 87.77 15.4 278 83.5 96.5
MVIT-B-16 [8] | 37.0 \ 1.8 | - | 83.0 |
ResT-Lite (Ours) 10.49 1.4 246 77.2(17.5) | 93.7 (1 4.6)
ResT-Small (Ours) 13.66 1.9 1043 79.6 (1 9.9) | 94.9 (1 5.8)
ResT-Base (Ours) 30.28 4.3 673 81.6 (1 2.6) | 95.7 (T 1.3)
ResT-Large (Ours) 51.63 7.9 429 83.6 (3.3 | 96.3(T 1.1)




ResT

Object Detection on MS COCO

Table 3: Object detection performance on the COCO val2017 split using the RetinaNet framework.

Backbones AP50:95 AP50 AP75 APs APm AP1 Param (M)
R18 [10] 31.8 49.6 33.6 16.3 34.3 43.2 21.3
PVT-T 28] 36.7 56.9 38.9 22.6 38.8 50.0 23.0
ResT-Small(Ours) 40.3 61.3 42.7 25.7 437 51.2 23.4
R50 [10] 37.4 56.7 40.3 23.1 41.6 48.3 37.9
PVT-S [28] 40.4 61.3 43.0 25.0 429 55.7 34.2
Swin-T [18] 41.5 62.1 44.1 27.0 44.2 53.2 38.5
ResT-Base (Ours) 42.0 63.2 44.8 29.1 45.3 53.3 40.5
R101 [10] 38.5 57.8 41.2 21.4 42.6 51.1 56.9
PVT-M |28] 41.9 63.1 44.3 25.0 449 57.6 53.9
Swin-S [18] 44.5 65.7 47.5 27.4 48.0 59.9 59.8
ResT-Large (Ours) 44.8 66.1 48.0 28.3 48.7 60.3 61.8
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Conclusion

v' we proposed ResT, an efficient multi-scale vision Transformer, which
produces hierarchical feature representations for dense prediction.

v" We build a EMSA, which compresses the memory by a simple depth-wise
convolution, and models the interaction across the attention-heads
dimension while keeping the diversity ability of multi-heads

v" Position encoding is constructed as spatial attention, which is more flexible
and can tackle with input images of arbitrary size without interpolation or
fine-tune.

v We design an effective stem module, which consists of a stack of
overlapping convolution operations with stride on the token map.
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Thank you!
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