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I However, in real scenarios such as autonomous driving, face recognition and verification, the

DNN model as well as the training dataset, are often hidden from users.

I Only the model feedback for each query (labels or confidence scores) are accessible.

I By iteratively querying the targeted model, the attackers generate adversarial examples xadv

based on exact feedback of each query.
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Score-based attacks

I Score-based : confidence score returned
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How to find the adversarial directions

I Zero Order (ZO) Attacks:

– Randomized Gradient-Free (RGF) method (ZO Optimization) [1,2]:

gµ(x) =
f(x+ µu)− f(x)

µ
u, (3)

where f represents f(xadv).

– Conducting projection gradient descent:

xt+1 = ProjNR(x) (xt − ηtgµ (xt)) . (4)

I Search-based Attacks:

– Random Search:

sµ(x) = I{hµ(x) < 0} · µu where hµ(x) = f(x+ µu)− f(x), (5)

– Conducting projection gradient descent:

xt+1 = ProjNR(x) (xt + ηts (xt)) . (6)

[1] Yurii Nesterov et al., Random gradient-free minimization of convex functions, 2017

[2] John Duchi et al., Optimal rates for zero-order convex optimization: The power of two function evaluations, 2015
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Black-Box Defense

I Main challenges in real scenarios,

– the defender should not significantly influence the model’s feedback to normal queries, but it

is difficult to know whether a query is normal or malicious;

– the defender has no information about what kinds of black-box attack strategies adopted by

the attacker.

I We define defense task to address the above two challenges as Black-Box Defense. For

product providers, the Black-Box defense should satisfy the below requirements:

– well keeping clean accuracy

– being robust against all kinds of black-box attacks

I However, the SOTA white-box defense, Adversarial Training (AT), is not suitable choice:

– significant degradation of the clean accuracy

– poor generalization for new data and adversarial attacks
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Random Noise Defense

I The core of query-based attack: find an attack direction by gradient estimation or

random search based on the exact feedback of consecutive queries.

gµ(x) =
f(x+ µu)− f(x)

µ
u,

sµ(x) = I{hµ(x) < 0} · µu where hµ(x) = f(x+ µu)− f(x).

I Random Noise Defense (RND) is realized by adding a random noise to each query at

the inference time. There the gradient estimator and searching direction become

gµ,ν(x) =
f (x+ µu+ νv1)− f (x+ νv2)

µ
u (7)
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Random Noise Defense

I For RND, the feedback for one query is F(x+ νv), with v ∼ N (0, I). And, ν controls

magnitude of random noise.

I RND should satisfy two conditions

– prediction of each query will not be changed significantly.

– the estimated gradient or direction searching should be perturbed as large as possible.

I In the following, we provide the theoretical analysis of RND, which can shed light on the

setting of ν.
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Theoretical Analysis of RND Against ZO Attacks

To facilitate subsequent analyses, we first introduce some assumptions, definitions, and notations.

Assumption 1.

f(x) is Lipschitz-continuous, i.e., |f(y)− f(x)| ≤ L0(f)‖y − x‖.

Assumption 2.

f(x) is continuous and differentiable, and ∇f(x) is Lipschitz-continuous, i.e.,

‖∇f(y)−∇f(x)‖ ≤ L1(f)‖y − x‖.

Definition 1.

The Gaussian-Smoothing function corresponding to f(x) with ν > 0,v ∼ N (0, I) is

fν(x) =
1

(2π)d/2

∫
f(x+ νv) · e− 1

2‖v‖
2
2 dv. (9)



Theoretical Analysis of RND Against ZO Attacks

Notations.

I The perturbation measure is specified as `2 norm, NR(x) = {x′|‖x′ − x‖2 ≤ R}.
I d = |X| denotes the input dimension.

I U t = {u0,u1, ...,ut}, Vt = {v01,v02, ...,vt1,vt2}, represent the noise added by attacker

or defenders. t is the iteration index.

I The benign example x is used as the initial solution, i.e., x0 = x.

I The generated sequential solutions are denoted as {x0,x1, ...,xQ}.
I We define SQ =

∑Q
t=0 ηt.

We study the convergence property of ZO attacks in Eq.(11) with gµ,ν(x) in Eq.(10) being the

gradient estimator.

gµ,ν(x) =
f (x+ µu+ νv1)− f (x+ νv2)

µ
u (10)

xt+1 = ProjNR(x0) (xt − ηtgµ,ν (xt)) . (11)
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Theoretical Analysis of RND Against ZO Attacks

Theorem 1.

Under Assumption 1, for any Q ≥ 0, consider a sequence {xt}Qt=0 generated according to the

descent update Eq.(11) using the gradient estimator gµ,ν(x) Then, we have

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤fµ,ν(x0)− f∗ν
SQ

+
1

SQ

Q∑
t=0

η2tL0(f)3d
5
2 (

1

2µ
+

√
2ν

µ2
+
ν2

µ3
).

We have |fµ,ν(x)− fν(x)| ≤ µL0(f)d1/2. To ensure |fµ,ν(xt)− fν(xt)| ≤ ε, We choose

µ ≤ ε
d1/2L0(f)

and set α = ν
µ . With constant stepsize, η =

[
Rε

(α+
√

2
2 )2d3L3

0(f)(Q+1)

]1/2
, we have

1

Q+ 1

Q∑
t=0

EUt,Vt(‖∇fµ,ν(xt)‖2) ≤ 2L0(f)
5
2R

1
2 d

3
2

(Q+ 1)
1
2 ε

1
2

(α+

√
2

2
). (12)

In order to ensure that expected squared norm of ∇fµ,ν can reach δ, the query complexity is

O
(

(α+
√
2
2 )2

d3L5
0(f)R
εδ2

)
.
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Remark 1.

I Due to the non-convexity assumption, we only guarantee the convergence to a stationary

point of the function fµ,ν(x), which is a smoothing approximation of fν .

I To make sure |fµ,ν(xt)− fν(xt)| ≤ ε, ∀ xt ∈ NR(x0), we utilize the Theorem 1 in [1],

|fµ,ν(x)− fν(x)| ≤ µL0(f)d1/2. So, we could choose µ ≤ ε
d1/2L0(f)

.

I In order to ensure that expected squared norm of ∇fµ,ν can reach δ, we set
2L0(f)

5
2R

1
2 d

3
2

(Q+1)
1
2 ε

1
2

(α+
√
2
2 ) = δ. Therefore, the expected number of queries is

O
(

(α+
√
2
2 )2

d3L5
0(f)R
εδ2

)
.

[1] Yurii Nesterov et al., Random gradient-free minimization of convex functions, 2017



Theoretical Analysis of RND Against ZO Attacks

Remark 1.

I Due to the non-convexity assumption, we only guarantee the convergence to a stationary

point of the function fµ,ν(x), which is a smoothing approximation of fν .

I To make sure |fµ,ν(xt)− fν(xt)| ≤ ε, ∀ xt ∈ NR(x0), we utilize the Theorem 1 in [1],

|fµ,ν(x)− fν(x)| ≤ µL0(f)d1/2. So, we could choose µ ≤ ε
d1/2L0(f)

.

I In order to ensure that expected squared norm of ∇fµ,ν can reach δ, we set
2L0(f)

5
2R

1
2 d

3
2

(Q+1)
1
2 ε

1
2

(α+
√
2
2 ) = δ. Therefore, the expected number of queries is

O
(

(α+
√
2
2 )2

d3L5
0(f)R
εδ2

)
.

[1] Yurii Nesterov et al., Random gradient-free minimization of convex functions, 2017



Theoretical Analysis of RND Against ZO Attacks

Remark 1.

I Due to the non-convexity assumption, we only guarantee the convergence to a stationary

point of the function fµ,ν(x), which is a smoothing approximation of fν .

I To make sure |fµ,ν(xt)− fν(xt)| ≤ ε, ∀ xt ∈ NR(x0), we utilize the Theorem 1 in [1],

|fµ,ν(x)− fν(x)| ≤ µL0(f)d1/2. So, we could choose µ ≤ ε
d1/2L0(f)

.

I In order to ensure that expected squared norm of ∇fµ,ν can reach δ, we set
2L0(f)

5
2R

1
2 d

3
2

(Q+1)
1
2 ε

1
2

(α+
√
2
2 ) = δ. Therefore, the expected number of queries is

O
(

(α+
√
2
2 )2

d3L5
0(f)R
εδ2

)
.

[1] Yurii Nesterov et al., Random gradient-free minimization of convex functions, 2017



Theoretical Analysis of RND Against ZO Attacks

I Theorem 1 shows the convergence rate is positive related to the ratio ν
µ . The larger ratio

ν
µ will lead to the higher upper bound of convergence error and slower

convergence rate.

I Under the queries limited setting, the attack efficiency will be significantly reduced, leading

to failed attacks or a much larger number of queries for successful attacks.

I The larger ratio ν
µ leads the effectiveness of RND.
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Theoretical Analysis of RND Against ZO Attacks

I Trade-off of Larger ν and Clean Accuracy:

If f(x) is Lipschitz-continuous, then |fν(x)− f(x)| ≤ νL0(f)d1/2. The larger ν is, the

larger the gap between fν(x) and f(x). So the clean accuracy of model with adding larger

noise will also decrease. This forms a trade-off between defense performance of RND

and clean accuracy.

I Larger Noise Size µ Adopted by Attackers:

The attacker may be aware of the defense mechanism, so they can also increase the adopted

noise size µ. As shown in figure in next page, for NES attack, the attack failure rate is

almost 0, when ν = µ = 0.01.

However, increasing the noise size µ will also lead less accurate gradient estimation and

random search in Eq.(3) and Eq.(5), leading to a significant decrease in attack

performance.
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Theoretical Analysis of RND Against ZO Attacks

Experimental results verify our theoretical findings.

Figure: Attack failure rate (%) of query-based attacks on VGG-16 and CIFAR-10 under different values
of µ and ν. We adopt logarithm scale for better illustration.



Theoretical Analysis of RND Against Adaptive Attacks

I As suggested in recent studies of robust defense [1, 2], the defender should take a robust

evaluation against the corresponding adaptive attack, in which case the attacker is

aware of the defense mechanism.

I Since the idea of RND is to insert random noise, an adaptive attacker could utilize

Expectation Over Transformation (EOT) [1] to obtain an more accurate estimation, i.e.,

querying one sample multiple times to obtain the average.

I Then, the original gradient estimator used in ZO attacks Eq.(11) is

gµ,ν(x) =
f (x+ µu+ νv1)− f (x+ νv2)

µ
u

Now, it becomes

g̃µ,ν(x) =
1

M

M∑
j=1

f(x+ µu+ νvj1)− f(x+ νvj2)

µ
µ, (13)

[1] Anish Athalye et al., Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples,

ICML 2018

[2] Florian Tramer et al., On Adaptive Attacks to Adversarial Example Defenses, NeurIPS 2020
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Theoretical Analysis of RND Against Adaptive Attacks

The convergence analysis of ZO attack with Eq.(13) against RND is presented in Theorem 2.

Theorem 2.

Under Assumption 1 and 2, for any Q ≥ 0, consider a sequence {xt}Qt=0 generated according to

the descent update Eq.(11) using the gradient estimator g̃µ,ν(x) Eq.(13), we have

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤L0(f)R

SQ
+

1

SQ

Q∑
t=0

η2t (L0(f)2L1(f)d2(
1

2
+

2ν2

µ2M
)

+
ν2L0(f)L1(f)2

µ
d

5
2 +

ν4L1(f)3(M + 1)

2µ2M
d3)

(14)



Theoretical Analysis of RND Against Adaptive Attacks

I The larger M for EOT:

Theorem 2 shows that with larger M , the upper bound will decrease. Therefore, EOT can

mitigate the defense effect caused by the randomness of RND.

However, with M −→∞ , the upper bound of expected convergence error (i.e., Eq. (14))

becomes

1

SQ

Q∑
t=0

ηtEUt,Vt(‖∇fµ,ν(xt)‖2) ≤L0(f)R

SQ
+

1

SQ

Q∑
t=0

η2t (
1

2
L0(f)2L1(f)d2

+
ν2L0(f)L1(f)2

µ
d

5
2 +

ν4L1(f)3

2µ2
d3)

which is still dominated by the max term ν4

µ2 d
3. It implies that the attack improvement

from EOT is limited, especially with the larger ratio ν
µ .
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Theoretical Analysis of RND Against Adaptive Attacks

Experimental results verify our theoretical findings. The relative performance improvements

induced by EOT generally decrease as M increases.

Figure: The evaluation of EOT with `∞ attack on CIFAR-10 and ImageNet under the adaptive and fixed
query setting. The left part is the results on CIFAR-10 and the right part is on ImageNet. The
average number of query of successful attack as well as the attack failure rate are reported.
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Theoretical Analysis of RND Against Search-based Attacks

Recall the original searching direction is

sµ(x) = I{hµ(x) < 0} · µu where hµ(x) = f(x+ µu)− f(x).

Therefore, the searching direction under RND becomes

sν(x) = I (hν(x) < 0) · µu where hν(x) = f (x+ µu+ νv1)− f (x+ νv2) (15)

I By adding noise νv, the value of hν(x) will be different from that of hµ(x), and there is

certain probability that Sign(hν(x)) be different from Sign(hµ(x)).

I When the random noise νv causes inconsistence between Sign(hν(x)) and Sign(hµ(x)),

RND will mislead the attackers to select the incorrect attack directions (i.e., abandoning the

descent direction w.r.t. f or selecting the ascent direction), so as to decrease the attack

performance.
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Theoretical Analysis of RND Against Search-based Attacks

Theorem 3.

Under Assumption 1, considering the direction update Eq.(6) with Eq.(15) in search-based

attacks, we have,

P (Sign(hµ(x)) 6= Sign(hν(x)) ≤ 2L0(f)ν
√
d

|hµ(x)|
(16)

Remark 2.

I Theorem 3 shows the probability of misleading attacker is positive correlated with ν
|hµ(x)| .

I Due to the small value µ and local linearity of smooth function, we

|hµ(x)| = |f(x+ µu)− f(x)| ≈ Cµ‖u‖. The |hµ(x)| is also positive correlated with the

stepsize µ within the small neighborhoods.

I So the probability of changing the sign is positive correlated with ν
µ .
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Theoretical Analysis of RND Against Search-based Attacks

Experimental results verify our theoretical findings.

Figure: Attack failure rate (%) of Square `∞ attacks on VGG-16(CIFAR-10), Inception v3(ImageNet)
and AT model (ImageNet) under different values of µ and ν, where µ is the square size in Square attacks.



Better Trade-off Between Defense Effect and Clean Accuracy

I To achieve a high-quality balance, we could reduce the sensitivity of the target model to

random noises.

I We propose to utilize Gaussian Augmentation Fine-tuning (GF), the loss function (CE

loss) is
min
θ

E(x,y)∈D − yT log

(
E

δ∼N (0,σ2I)
[(F (x+ δ))]

)

Figure: Clean accuracy for different models on CIFAR-10 and ImageNet. The circle lines and triangle
lines represent models on CIFAR-10 and ImageNet respectively.
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Better Trade-off Between Defense Effect and Clean Accuracy

I Compared with RND, RNG-GF significantly improves the defense performance under all

attack methods while maintaining the good clean accuracy.

I Combining AT with RND, RND-AT significantly improves the robustness against all attacks

and achieves best performance among all methods.
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