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> Misclassified: y # arg max F(@qqy)



Query-based Black-Box attacks

» However, in real scenarios such as autonomous driving, face recognition and verification, the
DNN model as well as the training dataset, are often hidden from users.
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Query-based Black-Box attacks

» However, in real scenarios such as autonomous driving, face recognition and verification, the
DNN model as well as the training dataset, are often hidden from users.

» Only the model feedback for each query (labels or confidence scores) are accessible.

> By iteratively querying the targeted model, the attackers generate adversarial examples x4,
based on exact feedback of each query.
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Score-based attacks

» Score-based : confidence score returned

— untargeted attack:
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Score-based attacks

» Score-based : confidence score returned

— untargeted attack:
glin f(wadv) = ma'X(07 -’T"(wadvyy) - m;z'X]:(mad’U)j))? s.t. ||$adv - pr S €
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How to find the adversarial directions

» Zero Order (ZO) Attacks:
— Randomized Gradient-Free (RGF) method (ZO Optimization) [1,2]:

where f represents f(ado).
— Conducting projection gradient descent:

@1 = Projy, @) (@ — negu (1)) -

(3)
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How to find the adversarial directions

» Zero Order (ZO) Attacks:
— Randomized Gradient-Free (RGF) method (ZO Optimization) [1,2]:

gu(w) _ f(m +uu) — f(m)u7
I

where f represents f(ado).
— Conducting projection gradient descent:

@1 = Projy, @) (@ — negu (1)) -

» Search-based Attacks:
— Random Search:

su(®) = {hu(z) <0} - pu where hy(z) = f(x + pu) — f(2),

— Conducting projection gradient descent:

Tip1 = ProjNR(:c) (e + s (x1))

[1] Yurii Nesterov et al.,, Random gradient-free minimization of convex functions, 2017

[2] John Duchi et al., Optimal rates for zero-order convex optimization: The power of two function evaluations, 2015

(4)



Black-Box Defense

» Main challenges in real scenarios,
— the defender should not significantly influence the model’s feedback to normal queries, but it
is difficult to know whether a query is normal or malicious;
— the defender has no information about what kinds of black-box attack strategies adopted by
the attacker.
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Black-Box Defense

» Main challenges in real scenarios,
— the defender should not significantly influence the model’s feedback to normal queries, but it
is difficult to know whether a query is normal or malicious;
— the defender has no information about what kinds of black-box attack strategies adopted by
the attacker.

> We define defense task to address the above two challenges as Black-Box Defense. For
product providers, the Black-Box defense should satisfy the below requirements:

— well keeping clean accuracy
— being robust against all kinds of black-box attacks

» However, the SOTA white-box defense, Adversarial Training (AT), is not suitable choice:

— significant degradation of the clean accuracy

— poor generalization for new data and adversarial attacks



Random Noise Defense

» The core of query-based attack: find an attack direction by gradient estimation or
random search based on the exact feedback of consecutive queries.
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Random Noise Defense

» The core of query-based attack: find an attack direction by gradient estimation or
random search based on the exact feedback of consecutive queries.
flx+ pu) — f(x
an(@) = (@ + pu) — f( )u,
1
sp(x) =I{hy(x) <0} - pu  where hy(x) = f(x+ pu) — f(x).

» Random Noise Defense (RND) is realized by adding a random noise to each query at
the inference time. There the gradient estimator and searching direction become

f(a:—i—,uu—i—l/vl)—f(a:—i—zwg)u (7)
i

sp(x) =1 (h, () <0) - pu where hy(x) = f (x + pu+vvy) — f(x+vvy)  (8)

Guw(T) =
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magnitude of random noise.
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— the estimated gradient or direction searching should be perturbed as large as possible.



Random Noise Defense

» For RND, the feedback for one query is F(z + vv), with v ~ N(0,I). And, v controls

magnitude of random noise.

» RND should satisfy two conditions

— prediction of each query will not be changed significantly.
— the estimated gradient or direction searching should be perturbed as large as possible.

» In the following, we provide the theoretical analysis of RND, which can shed light on the
setting of v.



Theoretical Analysis of RND Against ZO Attacks

To facilitate subsequent analyses, we first introduce some assumptions, definitions, and notations.
Assumption 1.

f(x) is Lipschitz-continuous, i.e., |f(y) — f(x)| < Lo(f)lly — x|

Assumption 2.

f(x) is continuous and differentiable, and V f(x) is Lipschitz-continuous, i.e.,

IVi(y) = V@)l < Li(f)lly — .

Definition 1.
The Gaussian-Smoothing function corresponding to f(x) with v > 0,v ~ N(0,I) is

fu(x) = W /f(a: +vw) e zl?lE gy, (9)



Theoretical Analysis of RND Against ZO Attacks

Notations.
> The perturbation measure is specified as £2 norm, Ng(z) = {o'||z' — z|2 < R}.
» d = |X]| denotes the input dimension.
> U, = {ug,u1,...,ut}, Vi = {vo1, 002, ..., V+1, Us2 }, represent the noise added by attacker
or defenders. t is the iteration index.
» The benign example x is used as the initial solution, i.e., ¢y = x.

> The generated sequential solutions are denoted as {xo, 1, ..., g}
> We define Sg = Y2 .



Theoretical Analysis of RND Against ZO Attacks

Notations.

> The perturbation measure is specified as f5 norm, Ng(z) = {z'|||z' — z|» < R}.

» d = |X]| denotes the input dimension.

> U, = {ug,u1,...,ut}, Vi = {vo1, 002, ..., V+1, Us2 }, represent the noise added by attacker
or defenders. t is the iteration index.

» The benign example x is used as the initial solution, i.e., ¢y = x.

> The generated sequential solutions are denoted as {xo, 1, ..., g}

> We define Sg = E?:o .

We study the convergence property of ZO attacks in Eq.(11) with g, . (x) in Eq.(10) being the

gradient estimator.

Gu (@) = flotput m};) mEACRLLTIM (10)

Ti+1 = Projar, (zy) (@t — NG, (1)) - (11)




Theoretical Analysis of RND Against ZO Attacks

Theorem 1.

Under Assumption 1, for any @ > 0, consider a sequence {mt}?zo generated according to the
descent update Eq.(11) using the gradient estimator g, , () Then, we have

Znt U,V (||Vf (wt)H ) < M XQ: —_ 4 — \/V + 7)
S Bt wv So — o 2 3
We have |f,..(x) — f.(x)| < pLo(f)d/?. To ensure |f,.,(z:) — f,(x:)| < ¢, We choose

1/2

< —55 — ’—/. | [ — Re
S ey i) and set « i With constant stepsize, 1) [(a+\f)2d3Lg(f)(Q+1) , we have

2Lo(f)3R2d3
ori ZEut,vf IV @) < =0 S ) (12)

In order to ensure that expected squared norm of V f,,,, can reach ¢, the query complexity is
0 ((a-+ 4 L)
+ 5 :

€d2

(a4

o[%
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Remark 1.

» Due to the non-convexity assumption, we only guarantee the convergence to a stationary

point of the function f,, ,,(x), which is a smoothing approximation of f,.
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Theoretical Analysis of RND Against ZO Attacks

Remark 1.
» Due to the non-convexity assumption, we only guarantee the convergence to a stationary
point of the function f,, ,,(x), which is a smoothing approximation of f,.
» To make sure |f, ., (x:) — fo(x:)| <€, Vaxr € Np(xo), we utilize the Theorem 1 in [I],
| fuw(x) — fu(x)] < puLo(f)d'/?. So, we could choose p < Wo(f)'
» In order to ensure that expected squared norm of V f,,,, can reach ¢, we set

5 1 3
%(a + g) = 0. Therefore, the expected number of queries is
+1)2€2

dS 5
0 ((a+ EPLLps).

[1] Yurii Nesterov et al., Random gradient-free minimization of convex functions, 2017
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» Theorem 1 shows the convergence rate is positive related to the ratio Z . The larger ratio
v

m will lead to the higher upper bound of convergence error and slower
convergence rate.

» Under the queries limited setting, the attack efficiency will be significantly reduced, leading
to failed attacks or a much larger number of queries for successful attacks.



Theoretical Analysis of RND Against ZO Attacks

» Theorem 1 shows the convergence rate is positive related to the ratio /51 . The larger ratio

v

m will lead to the higher upper bound of convergence error and slower
convergence rate.

» Under the queries limited setting, the attack efficiency will be significantly reduced, leading
to failed attacks or a much larger number of queries for successful attacks.

» The larger ratio /% leads the effectiveness of RND.



Theoretical Analysis of RND Against ZO Attacks

» Trade-off of Larger v and Clean Accuracy:
If f(x) is Lipschitz-continuous, then | f,(x) — f(x)| < vLo(f)d*/?. The larger v is, the
larger the gap between f,(x) and f(x). So the clean accuracy of model with adding larger
noise will also decrease. This forms a trade-off between defense performance of RND
and clean accuracy.



Theoretical Analysis of RND Against ZO Attacks

» Trade-off of Larger v and Clean Accuracy:
If f(x) is Lipschitz-continuous, then | f,(x) — f(x)| < vLo(f)d*/?. The larger v is, the
larger the gap between f,(x) and f(x). So the clean accuracy of model with adding larger
noise will also decrease. This forms a trade-off between defense performance of RND
and clean accuracy.

» Larger Noise Size 1+ Adopted by Attackers:
The attacker may be aware of the defense mechanism, so they can also increase the adopted
noise size p. As shown in figure in next page, for NES attack, the attack failure rate is
almost 0, when v = 4 = 0.01.
However, increasing the noise size p will also lead less accurate gradient estimation and
random search in Eq.(3) and Eq.(5), leading to a significant decrease in attack
performance.



Theoretical Analysis of RND Against ZO Attacks

Experimental results verify our theoretical findings.
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evaluation against the corresponding adaptive attack, in which case the attacker is
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querying one sample multiple times to obtain the average.



Theoretical Analysis of RND Against Adaptive Attacks

> As suggested in recent studies of robust defense [1, 2], the defender should take a robust
evaluation against the corresponding adaptive attack, in which case the attacker is
aware of the defense mechanism.

» Since the idea of RND is to insert random noise, an adaptive attacker could utilize
Expectation Over Transformation (EOT) [1] to obtain an more accurate estimation, i.e.,
querying one sample multiple times to obtain the average.

> Then, the original gradient estimator used in ZO attacks Eq.(11) is
flx+pu+vv) — f(x+ 1/v2)u
L

Gy (T) =
Now, it becomes

Gu(T) = , (13)

M
1 Z flx+ pu+rvvji) — fle 4+ vvj2)
M 4 L

Jj=1
[1] Anish Athalye et al., Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples,
ICML 2018

[2] Florian Tramer et al., On Adaptive Attacks to Adversarial Example Defenses, NeurlPS 2020



Theoretical Analysis of RND Against Adaptive Attacks

The convergence analysis of ZO attack with Eq.(13) against RND is presented in Theorem 2.

Theorem 2.

Under Assumption 1 and 2, for any Q > 0, consider a sequence {wt}?zo generated according to
the descent update Eq.(11) using the gradient estimator g, ,(x) Eq.(13), we have

ZQ:nE (19, o)) <D SR LD+ 22)

t5U Ve v\t 21/

= TS W (1)
2L0( Dt P2, PO+ D)

2u2M



Theoretical Analysis of RND Against Adaptive Attacks

» The larger M for EOT:
Theorem 2 shows that with larger M, the upper bound will decrease. Therefore, EOT can
mitigate the defense effect caused by the randomness of RND.



Theoretical Analysis of RND Against Adaptive Attacks

» The larger M for EOT:
Theorem 2 shows that with larger M, the upper bound will decrease. Therefore, EOT can
mitigate the defense effect caused by the randomness of RND.
However, with M — oo , the upper bound of expected convergence error (i.e., Eq. (14))

becomes
Q 1 Q
ZmEu, Vo (IV fuw(@)|%) < ?Z Ly (f)d?
=0 t=0
2L0( NG 4L1< P )
I 2u?

which is still dominated by the max term Z—gd?’. It implies that the attack improvement

from EOT is limited, especially with the larger ratio ;{



Theoretical Analysis of RND Against Adaptive Attacks

Experimental results verify our theoretical findings. The relative performance improvements
induced by EOT generally decrease as M increases.



Theoretical Analysis of RND Against Adaptive Attacks

Experimental results verify our theoretical findings. The relative performance improvements
induced by EOT generally decrease as M increases.

settings Methods M=1 M=5 M=10 | Methods M=1 M=5 M= 10
adantive NES 1448/0.484  4078/0.361  5763/0.342 NES 2532/0.762  5364/0.705  7582/0.691
P ZS 1489/0.493  3189/0.374  5912/0.349 A 2824/0.825  5735/0.761  7662/0.740
NES 1448/0.484  2528/0.452  3246/0.443 NES 2533/0.762  5240/0.775  5658/0.781
A 1489/0.493  2765/0.448  3123/0.421 ZS 2824/0.825  4023/0.842  4652/0.861

Bandit 436/0.696 276/0.582 314/0.543 Bandit 305/0.604  759/0.523 946/0.49

fixed Square 380/0.301 181/0.162 223/0.121 Square 93/0.353 145/0.20 328/0.171
SignHunter ~ 459/0.367 559/0.224  759/0.191 | SignHunter  173/0.532  336/0.456  659/0.431
ECO 904/0.720  1681/0.761  2560/0.793 ECO 1237/0.666  3065/0.678  3091/0.692

SimBA 1353/0.650  3852/0.467  4103/0.396 SimBA 274/0.891 468/0.878  517/0.869

Figure: The evaluation of EOT with ¢, attack on CIFAR-10 and ImageNet under the adaptive and fixed
query setting. The left part is the results on CIFAR-10 and the right part is on ImageNet. The
average number of query of successful attack as well as the attack failure rate are reported.
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Theoretical Analysis of RND Against Search-based Attacks

Recall the original searching direction is
su(x) =1{hy(x) <0} - pu  where hy(x) = f(x+ pu) — f(x).
Therefore, the searching direction under RND becomes

sy(x) =1 (h,(x) <0) - pu where hy,(x) = f (x + pu + vvy) — f (x4 vvs) (15)

» By adding noise vv, the value of h, (x) will be different from that of h,(x), and there is
certain probability that Sign(h, (x)) be different from Sign(h,,(x)).

» When the random noise vv causes inconsistence between Sign(h, (x)) and Sign(h,(x)),
RND will mislead the attackers to select the incorrect attack directions (i.e., abandoning the
descent direction w.r.t. f or selecting the ascent direction), so as to decrease the attack

performance.



Theoretical Analysis of RND Against Search-based Attacks

Theorem 3.
Under Assumption 1, considering the direction update Eq.(6) with Eq.(15) in search-based
attacks, we have,

2Lo(f)rvd

P(Sign(h,(x)) # Sign(h,(xz)) < |h ()|

(16)
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Theoretical Analysis of RND Against Search-based Attacks

Theorem 3.
Under Assumption 1, considering the direction update Eq.(6) with Eq.(15) in search-based

attacks, we have,

. . 2LQ I/\f
P(Signlly(a)) # Sien(h () < Lo (16)
Remark 2.
» Theorem 3 shows the probability of misleading attacker is positive correlated with m
» Due to the small value v and local linearity of smooth function, we

|hu(x)| = | f(x + pu) — f(x)| = Cul|u|. The |h,(x)| is also positive correlated with the

stepsize . within the small neighborhoods.



Theoretical Analysis of RND Against Search-based Attacks

Theorem 3.
Under Assumption 1, considering the direction update Eq.(6) with Eq.(15) in search-based

attacks, we have,

P(Sign(y () # Sign(h, ) < 2o (16)

Remark 2.
» Theorem 3 shows the probability of misleading attacker is positive correlated with m
"

» Due to the small value v and local linearity of smooth function, we
|hu(x)| = | f(x + pu) — f(x)| = Cul|u|. The |h,(x)| is also positive correlated with the

stepsize . within the small neighborhoods.

> So the probability of changing the sign is positive correlated with /%



Theoretical Analysis of RND Against Search-based Attacks

Experimental results verify our theoretical findings.

Square attack in VGG Square attack in Inception Square attack in AT model
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Figure: Attack failure rate (%) of Square £, attacks on VGG-16(CIFAR-10), Inception v3(ImageNet)
and AT model (ImageNet) under different values of u and v, where p is the square size in Square attacks.



Better Trade-off Between Defense Effect and Clean Accuracy

» To achieve a high-quality balance, we could reduce the sensitivity of the target model to

random noises.



Better Trade-off Between Defense Effect and Clean Accuracy

» To achieve a high-quality balance, we could reduce the sensitivity of the target model to
random noises.

» We propose to utilize Gaussian Augmentation Fine-tuning (GF), the loss function (CE
loss) is

i Bieep ~ o7 1og (F(e+)])

E
S~ N (0,021)



Better Trade-off Between Defense Effect and Clean Accuracy

» To achieve a high-quality balance, we could reduce the sensitivity of the target model to

random noises.

» We propose to utilize Gaussian Augmentation Fine-tuning (GF), the loss function (CE
loss) is

i Bieep ~ o7 1og (F(e+)])

E
S~ N (0,021)

clean acc for different models
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The size of v

Figure: Clean accuracy for different models on CIFAR-10 and ImageNet. The circle lines and triangle
lines represent models on CIFAR-10 and ImageNet respectively.



Better Trade-off Between Defense Effect and Clean Accuracy

» Compared with RND, RNG-GF significantly improves the defense performance under all
attack methods while maintaining the good clean accuracy.

Table 2: The comparison of RND (v = 0.02), GF, RND-GF (v = 0.05), AT, RND-AT (v = 0.05), PNI,
RSE, and FD on CIFAR-10 and Imagenet. The average number of queries of successful attack and the attack
failure rates are reported. The best and second best attack failure rate under each attack are highlighted in bold
and underlined, respectively. The evaluation under /> attack is shown in Section B.6 of supplementary materials.
Datasets | Methods | Clean Acc | NES(foo) | ZS(fe) | Bandit(f) | Sign(fe) | Square(fog) | SimBA(f2) | ECO(fn0)

Clean Model 465.5/0.01 581.8/0.06 210.2/0.03 167.6/0.03 137.1/0.02 457.2/0.04 457.8/0.0
GF 999.0/0.407 759.9/0.544 | 744.5/0.116 | 348.3/0.027 581.0/0.061 | 1146.8/0.395 | 883.9/0.067
RSE[30] 1246.3/0.396 | 1327.8/0.422 | 281.7/0.372 243.7/0.221 413.3/0.243 | 498.3/0.337 578.3/0.534
CIFAR-10 PNI[23] 1071.4/0.725 | 1310.7/0.823 | 324.9/0.824 | 267.0/0.708 | 295.3/0.612 945.0/0.857 | 2342.2/0.623
(WideNet-28) AT[20] 821.6/0.807 614.9/0.862 | 1451.5/0.623 | 766.3/0.476 | 1135.4/0.499 | 1523.2/0.635 | 1180.4/0.484
RND 842.5/0.05 941.8/0.143 | 273.1/0.478 977.2/0.226 | 762.4/0.116 | 2112.6/0.549 | 912.8/0.688
RND-GF 2805.7/0.516 | 2966.3/0.730 | 1223.5/0.841 | 1017.1/0.407 | 1207.3/0.378 | 1220.2/0.863 | 687.2/0.872
RND-AT 2499.2/0.842 | 2625.7/0.923 | 891.5/0.891 767.9/0.737 | 1170.7/0.730 | 1787.4/0.912 | 687.4/0.911

Clean Model | 74.90% 1031.9/0.0 | 2013.0/0.235 329.2/0.02 264.1/0.03 76.5/0.0 1234.5/0.281 347.7/0.0

GF[37] 74.70% 1685.5/0.03 | 1712.1/0.347 | 601.4/0.02 329.0/0.0 97.28/0.0 1417.4/0.112 362.4/0.0
ImageNet FD[49] 54.2()% 1997.2/0.679 | 1555.5/0.775 | 1579.2/0.426 | 1633.1/0.332 | 1092.4/0.242 | 2607.9/0.613 | 1501.0/0.240
(Rsst;-SO) AT[17] 61.60% 2113.4/0.724 | 1688.7/0.8 1091.5/0.416 | 1522.7/0.289 | 1109.0/0.159 | 2638.2/0.651 | 1440.6/0.200
. RND 73.00% 3041.5/0.245 | 2266.2/0.330 | 390.6/0.536 | 661.0/0.314 81.5/0.101 825.3/0.612 | 2435.5/0.540
RND-GF 71.15% 2489.3/0.421 | 2053.5/0.563 | 495.9/0.603 514.0/0.348 | 1009.9/0.146 | 777.2/0.762 | 994.8/0.702
RND-AT 58.15% 2556.6/0.864 | 2596.6/0.870 | 448.0/0.810 | 724.2/0.632 | 1306.3/0.386 | 1210.5/0.953 | 631.1/0.865
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Better Trade-off Between Defense Effect and Clean Accuracy

Compared with RND, RNG-GF significantly improves the defense performance under all
attack methods while maintaining the good clean accuracy.

Combining AT with RND, RND-AT significantly improves the robustness against all attacks

and achieves best performance among all methods.

Table 2: The comparison of RND (v = 0.02), GF, RND-GF (v = 0.05), AT, RND-AT (v = 0.05), PNI,
RSE, and FD on CIFAR-10 and Imagenet. The average number of queries of successful attack and the attack
failure rates are reported. The best and second best attack failure rate under each attack are highlighted in bold
and underlined, respectively. The evaluation under /> attack is shown in Section B.6 of supplementary materials.

Datasets | Methods | Clean Acc | NES(foo) | ZS(fe) | Bandit(/f) | Sign(fe) | Square(fog) | SimBA(f2) | ECO(/n0)
Clean Model | 96.60% 465.5/0.01 581.8/0.06 210.2/0.03 167.6/0.03 137.1/0.02 457.2/0.04 457.8/0.0
GF 0 999.0/0.407 759.9/0.544 744.5/0.116 348.3/0.027 581.0/0.061 1146.8/0.395 | 883.9/0.067
RSE[30] 1246.3/0.396 | 1327.8/0.422 | 281.7/0.372 243.7/0.221 413.3/0.243 498.3/0.337 578.3/0.534
CIFAR-10 PNI[23] 1071.4/0.725 | 1310.7/0.823 | 324.9/0.824 267.0/0.708 295.3/0.612 945.0/0.857 | 2342.2/0.623
(WideNet-28) AT[20] 821.6/0.807 614.9/0.862 | 1451.5/0.623 | 766.3/0.476 | 1135.4/0.499 | 1523.2/0.635 | 1180.4/0.484
RND 842.5/0.05 941.8/0.143 273.1/0.478 977.2/0.226 762.4/0.116 | 2112.6/0.549 | 912.8/0.688
RND-GF 2805.7/0.516 | 2966.3/0.730 | 1223.5/0.841 | 1017.1/0.407 | 1207.3/0.378 | 1220.2/0.863 | 687.2/0.872
RND-AT 2499.2/0.842 | 2625.7/0.923 | 891.5/0.891 767.9/0.737 | 1170.7/0.730 | 1787.4/0.912 | 687.4/0.911
Clean Model | 74.90% 1031.9/0.0 | 2013.0/0.235 329.2/0.02 264.1/0.03 76.5/0.0 1234.5/0.281 347.7/0.0
GF[37] 70% 1685.5/0.03 | 1712.1/0.347 601.4/0.02 329.0/0.0 97.28/0.0 1417.4/0.112 362.4/0.0
ImageNet FD[49] 1997.2/0.679 | 1555.5/0.775 | 1579.2/0.426 | 1633.1/0.332 | 1092.4/0.242 | 2607.9/0.613 | 1501.0/0.240
(ResNet-30) AT[17] 2113.4/0.724 | 1688.7/0.815 | 1091.5/0.416 | 1522.7/0.289 | 1109.0/0.159 | 2638.2/0.651 | 1440.6/0.200
b RND 3041.5/0.245 | 2266.2/0.330 | 390.6/0.536 661.0/0.314 81.5/0.101 825.3/0.612 | 2435.5/0.540
RND-GF 2489.3/0.421 | 2053.5/0.563 | 495.9/0.603 514.0/0.348 | 1009.9/0.146 | 777.2/0.762 | 994.8/0.702
RND-AT 2556.6/0.864 | 2596.6/0.870 | 448.0/0.810 724.2/0.632 | 1306.3/0.386 | 1210.5/0.953 | 631.1/0.865
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