On the value of Interaction and **Function approximation in Imitation Learning**

Nived Rajaraman, Yanjun Han, Lin F. Yang, Jingbo Liu, Jiantao Jiao, Kannan Ramchandran

NeurIPS 2021

Rewards for practical RL problems are often hard to specify.

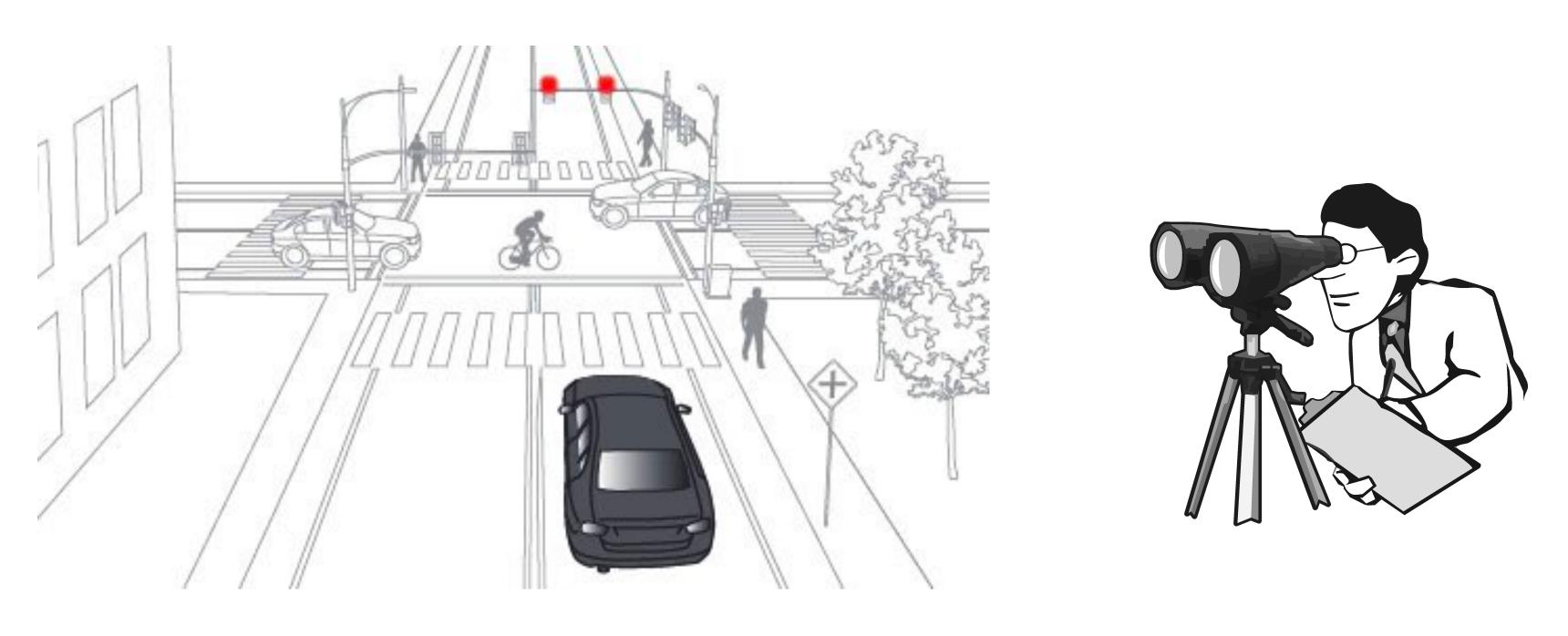
Reward design must be consistent with counterfactual questions: "What would an expert have done?"

$$\begin{aligned} r(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) &= \begin{cases} 1 & \text{if stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases} \tag{3} \\ r(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) &= \begin{cases} 1 & \text{if stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0.25 & \text{if } \neg \text{stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \land \text{grasp}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases} \end{aligned} \tag{4} \\ r(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) &= \begin{cases} 1 & \text{if stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0.25 & \text{if } \neg \text{stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \land \text{grasp}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0.125 & \text{if } \neg \text{stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \lor \text{grasp}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \land \text{stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases} \end{aligned} \tag{5} \\ r(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) &= \begin{cases} 1 & \text{if stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \land \text{grasp}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \\ 0.125 & \text{if } \neg (\text{stack}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \lor \text{grasp}(b_{z}^{(1)}, s^{P}, s^{B1}, s^{B2}) \land \text$$

Popov et al. 2017

Need to correctly balance interpretability and sparsity.

Imitation learning over reward engineering



Expert demonstrations earner

Image source: Gettyimages

"Learning from demonstrations in the absence of reward feedback"

Notivation

What are the theoretical limits of Imitation Learning (i) with interaction and (ii) in the presence of function approximation?

Notation:

 $J(\pi)$: Expected total reward of policy π in an episode of length H. Learner $\hat{\pi}$ tries to minimize Suboptimality $\triangleq \mathbb{E} \left[J(\pi^*) - J(\hat{\pi}) \right]$, Difference in expected reward of the expert and the learner policy.

 π^* is expert's policy

Theoretical understanding of IL: Prior work

Theorem [RYJR20] In the no-interaction and tabular setting, Behavior Cloning achieves,

Best achievable (up to log-factors) by any algorithm.

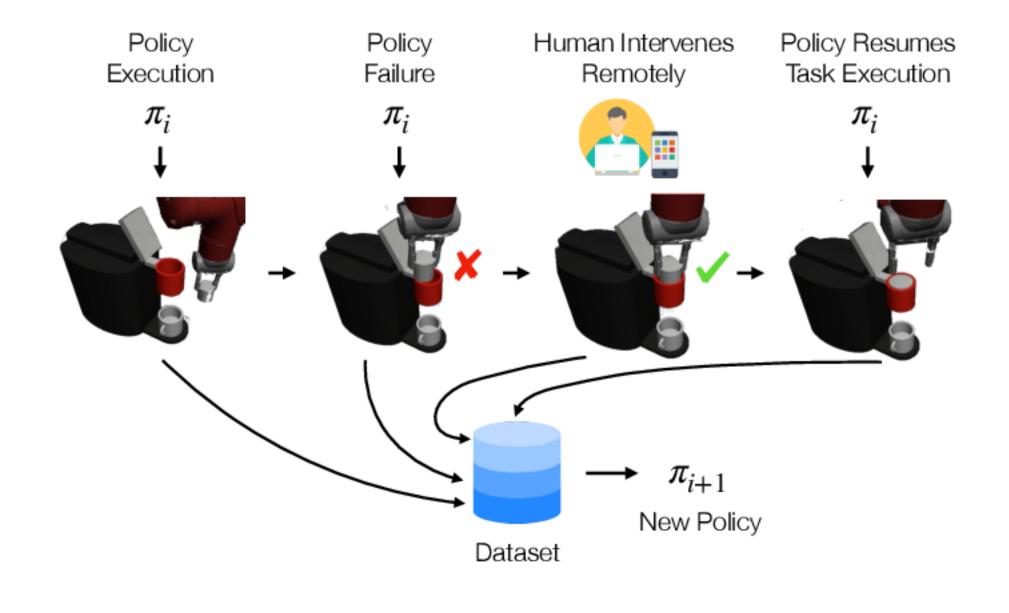
No interaction: Learner is only provided a dataset of N expert demonstrations; Cannot interact with the MDP

Suboptimality $\lesssim \frac{SH^2 \log(N)}{N}$

Going beyond the no-interaction setting

Interactive expert: Learner can interact with the environment N times and query the expert policy at visited states

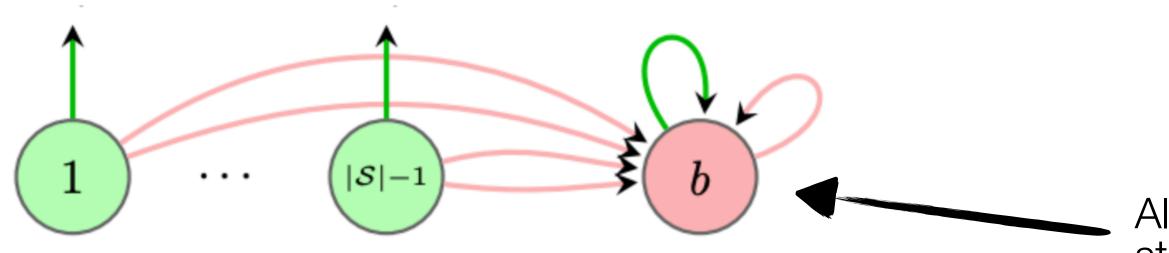
Setting is closely related to human-in-the-loop RL



Mandlekar et al. 2020

IL with an interactive expert

Is it possible to improve the suboptimality of behavior cloning if the expert is **interactive**?



Hard instance: Reset cliff MDP

In the worst case, **no**.

For all algorithms even with an interactive expert, in the worst case, Suboptimality $\gtrsim SH^2/N$ [RYJR20]

> All learners get stuck at bad state

IL with an interactive expert

 μ -recoverability assumption [RB11]: For any state s, action a',

Interpretation: Expert knows how to "recover" after making a mistake at some time t and pays an expected cost of at most μ .

Is it possible to improve the suboptimality of behavior cloning if the expert is **interactive**?

 $max_a Q_t^*(s, a) - Q_t^*(s, a') \le \mu$

IL with an interactive expert

Theorem 1 [RHYLJR21]

achieves,

Suboptimali

Best achievable (up to l

Is it possible to improve the suboptimality of behavior cloning if the expert is **interactive**?

Under μ -recoverability, in the **interactive** and **tabular** setting, **DAGGER** (FTRL)

ty
$$\lesssim \frac{\mu SH \log(N)}{N}$$

log-factors) by any algorithm.

IL with function approximation

How do approaches such as BC and Mimic-MD [RYJR20] perform in the presence of function approximation?

IL with linear function approximation

Linear expert: For every state s, the deterministic expert plays an action $\pi_t^*(s) \in \operatorname{argmax}_a \langle \theta_t, \phi_t(s, a) \rangle$ $\phi_t(s, a) \in \mathbb{R}^d \text{ is a known representation of state-actions}$

Interpretation: Expert policy is realized by a linear multi-class classifier

Linear expert with no MDP interaction

Theorem 2 [RHYLJR21]: In the no-interaction and linear expert setting, Behavior Cloning achieves, Suboptimality $\lesssim \frac{dH^2 \log(N)}{N}$ With d = S recovers bounds in the tabular setting.

Known transition: Learner is provided a dataset of N expert demonstrations; **Knows the MDP transition**

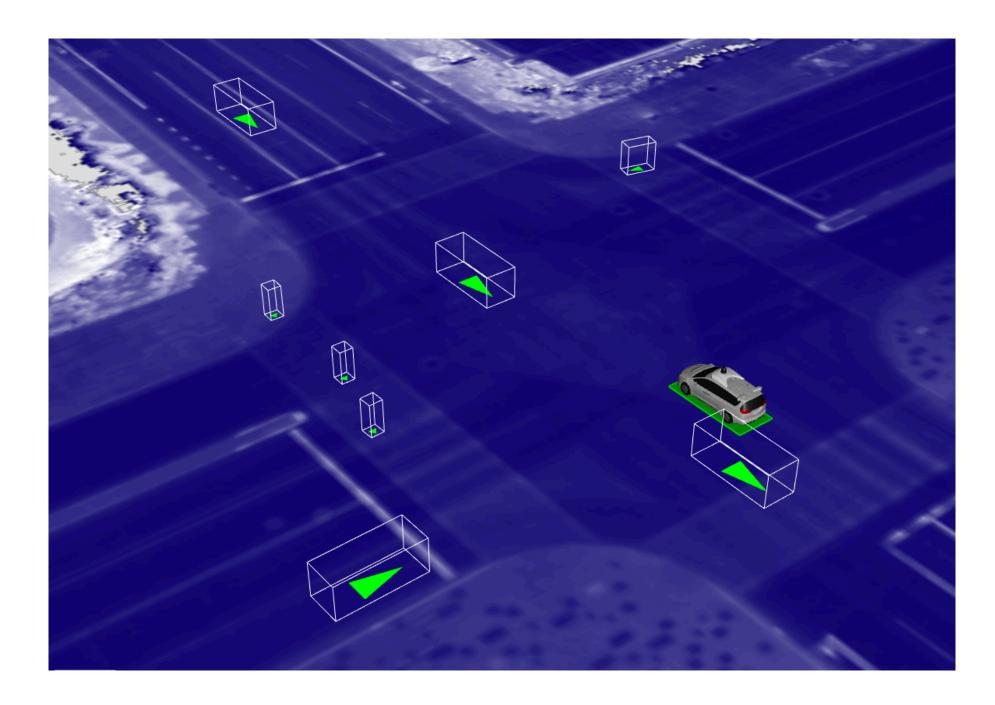
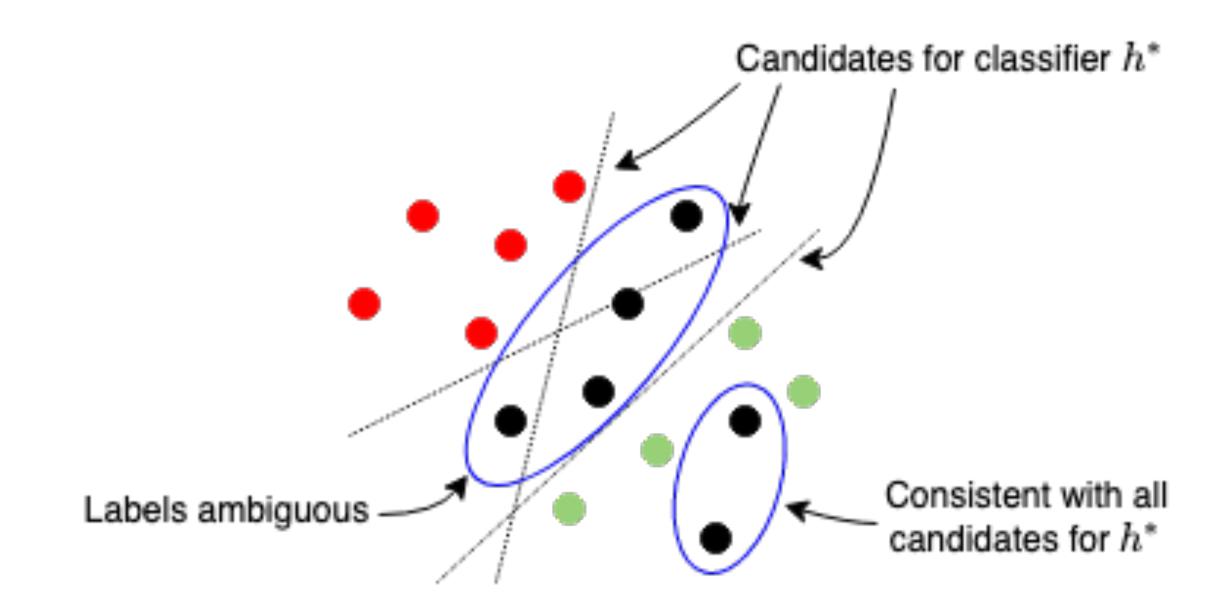


Image source: Waymo

Interpretation: carrying out Imitation Learning in a simulation environment.

Confidence set classification: Consider classification over family of hypotheses, \mathscr{H} from $\mathscr{X} \to \mathscr{Y}$. From a dataset of examples D from a classifier h^* return the largest measure of points where $h^*(x)$ is known without ambiguity.



Theorem 3 [RHYLJR21]:

For each *t*, consider the linear classifier $\pi_t^* : S \to A$. that,

Suboptimality

Message: Error compounding (H^2 dependence) can be broken if confidence set linear classification is possible to expected loss of $o_N(1)$.

- Given a confidence set classifier with expected loss ℓ_t , there exists an IL algorithm such

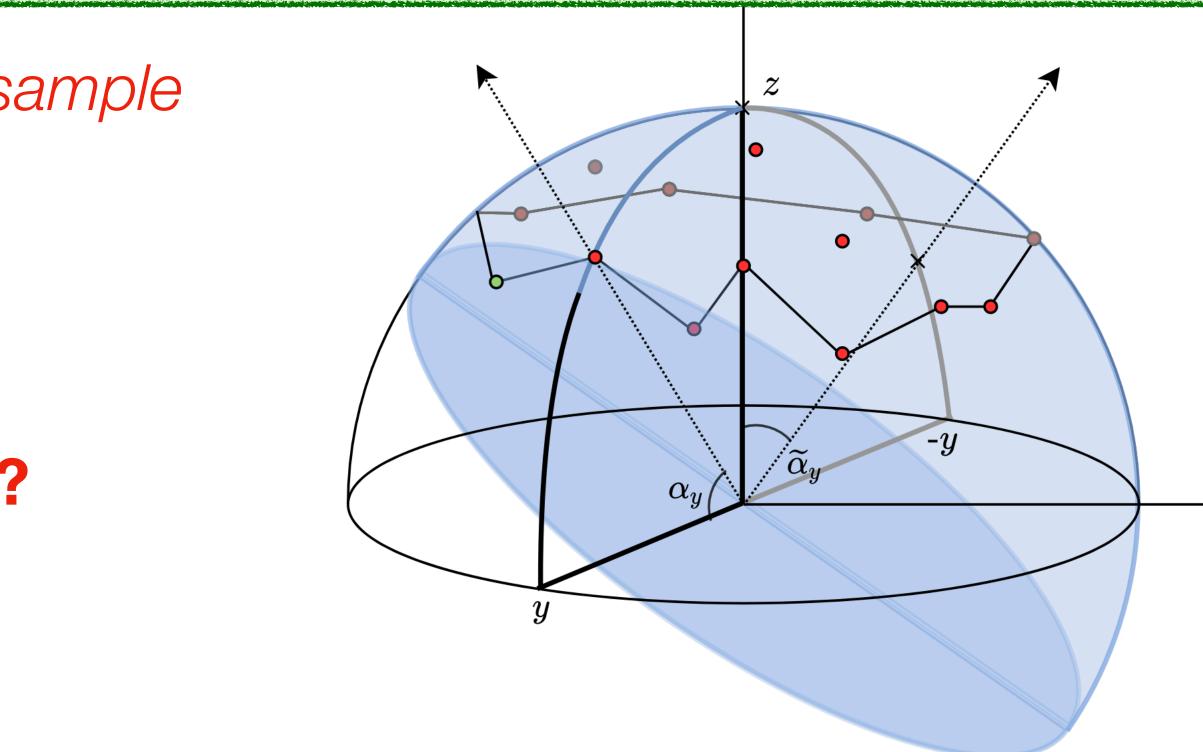
$$\mathbf{y} \lesssim H^{3/2} \sqrt{\frac{d}{N} \frac{\sum_{t=1}^{H} \ell_t}{N}}$$

Theorem 4 [RHYLJR21]: confidence set linear classification is $\Theta(d^{3/2}/N)$.

Confidence set linear classification is sample efficient for the uniform distribution

Extending to general distributions?

If distribution over inputs is uniform over the unit sphere \mathbb{S}^{d-1} , the minimax loss of



On the value of Interaction and **Function approximation in Imitation Learning**

Nived Rajaraman, Yanjun Han, Lin F. Yang, Jingbo Liu, Jiantao Jiao, Kannan Ramchandran

NeurIPS 2021