
How Powerful are Performance 
Predictors in Neural Architecture Search?

Colin White
Abacus.AI

Arber Zela
University of Freiburg

Binxin Ru
Oxford University

Yang Liu
Abacus.AI

Frank Hutter
University of Freiburg
Bosch Center for AI

Slides (with hyperlinks): https://crwhite.ml



● Early NAS algos required fully training 1000s of architectures [Zoph and Le 2016]
● Recent algos use techniques to predict the final performance of architectures

Performance prediction techniques

https://arxiv.org/abs/1611.01578


A performance predictor is any technique which predicts the final accuracy or 
ranking of architectures, without fully training them

Performance Predictors

● Initialization: performs any 
necessary pre-computation

● Query: take any architecture as 
input, and output predicted 
accuracy

● (Update: similar to initialization)



Outline
● Motivation
● Introduction to Performance Predictors

○ Model-based predictors
○ Learning curve based predictors
○ Zero-cost predictors
○ Weight sharing

● Experiments: 31 performance predictors
○ Stand-alone predictor experiments
○ OMNI
○ NAS experiments

● Conclusion



● Supervised learning - regression
○ X - the architecture encoding (e.g. one-hot adjacency matrix)
○ Y - validation accuracy of trained architecture

Model-Based Predictors

● Gaussian processes [Kandasamy et 
al. 2018], [Jin et al. 2018]

● Boosted trees [Luo et al. 2020], 
[Siems et al. 2020]

● GNNs [Shi et al. 2019], [Wen et al. 
2019]

● Specialized encodings [White et al. 
2019], [Ning et al. 2020]

High init time, low query time
[White et al. 2019]

https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1806.10282
https://arxiv.org/abs/2007.04785
https://arxiv.org/abs/2008.09777
https://arxiv.org/abs/1911.09336
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/2004.01899
https://arxiv.org/abs/1910.11858


● Learning curve extrapolation
○ Fit partial learning curve to 

parametric model [Domhan et al. 
2015]

○ Bayesian NN [Klein et al. 2017]
● Training statistics

○ Early stopping (val acc) [Elsken et 
al. 2018]

○ Sum of training losses [Ru et al. 
2020]

Learning curve based predictors

No init time, high query time 

[Elsken et al. 2018]

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/1808.05377


● First and second derivatives as 
features, SVR [Baker et al. 2017]

● Full LC as features, Bayesian NN 
[Klein et al. 2017]

Hybrid model-based + LC predictors
Train a model, using partial learning curve + hyperparams, to predict 
final accuracy

High init time, high query time

https://arxiv.org/abs/1705.10823
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf


Compute a statistic of an 
architecture in 3-5 seconds

● Jacobian covariance [Mellor et 
al. 2020]

● Synaptic Flow [Abdelfattah et 
al. 2021]
○ SNIP [Lee et al. 2018]

“Zero-cost” proxies

Low init time, low query time

 [Mellor et al. 2020]

[Abdelfattah et al. 2021]

https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2101.08134


Train a set of shared weights that 
can be used by all architectures 
(the Supernetwork)

● OneShot [Bender et al. 2018]
● Random Search WS [Li & 

Talwalkar 2019]

Weight Sharing

Medium init time, low query time
 [Bender et al. 2018]

http://proceedings.mlr.press/v80/bender18a/bender18a.pdf
https://arxiv.org/abs/1902.07638
https://arxiv.org/abs/1902.07638
https://arxiv.org/abs/2006.04647
http://proceedings.mlr.press/v80/bender18a/bender18a.pdf


Outline
● Motivation
● Introduction to Performance Predictors

○ Model-based predictors
○ Learning curve based predictors
○ Zero-cost predictors
○ Weight sharing

● Experiments: 31 performance predictors
○ Stand-alone predictor experiments
○ OMNI
○ NAS experiments

● Conclusion





Notes on experiments

● Three axes of comparison: initialization time, 
query time, correlation / rank correlation metrics

● Official implementation whenever possible
● Train/test data drawn u.a.r.
● Light hyperparameter tuning 

○ Levels the playing field

○ Cross-validation is often used 
during NAS





NAS-Bench-101: a more complex search space

● Path encoding 
performs very well





Mutation-based train/test sets

● Model-based predictors perform worse. Trees are comparatively better



OMNI: The Omnipotent Predictor
● Combine best predictors from three families: SoTL + Jacob. Cov + NGBoost
● Consistent performance almost everywhere
● 20% improvement in most-competitive bottom row



OMNI Ablation

● Jacob. Cov + 
SoTL-E is 
consistent

● NGBoost needed 
for top 
performance in 
lower middle/right



NAS Experiments



So… How powerful are performance predictors?

● Largely the same trends across all 
experiments

● Combining predictors works the best
● Complex search spaces: specialized 

encodings (e.g. path encoding)



Conclusions & Future Work
● First large-scale study of performance predictors
● Four families, 31 total performance predictors
● OMNI achieves the best performance

Future work

● Zero-cost predictors that work on larger search spaces
● More sophisticated combinations of predictors + integration in NAS

Code: https://github.com/automl/NASLib

Full paper: https://arxiv.org/abs/2104.01177

Thanks!

Code: https://github.com/automl/naslib

Thanks!

https://github.com/automl/NASLib
https://arxiv.org/abs/2104.01177
https://github.com/automl/naslib



