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● Early NAS algos required fully training 1000s of architectures [Zoph and Le 2016]
● Recent algos use techniques to predict the final performance of architectures

Performance prediction techniques

https://arxiv.org/abs/1611.01578


A performance predictor is any technique which predicts the final accuracy or 
ranking of architectures, without fully training them

Performance Predictors

● Initialization: performs any 
necessary pre-computation

● Query: take any architecture as 
input, and output predicted 
accuracy

● (Update: similar to initialization)
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● Supervised learning - regression
○ X - the architecture encoding (e.g. one-hot adjacency matrix)
○ Y - validation accuracy of trained architecture

Model-Based Predictors

● Gaussian processes [Kandasamy et 
al. 2018], [Jin et al. 2018]

● Boosted trees [Luo et al. 2020], 
[Siems et al. 2020]

● GNNs [Shi et al. 2019], [Wen et al. 
2019]

● Specialized encodings [White et al. 
2019], [Ning et al. 2020]

High init time, low query time
[White et al. 2019]

https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1802.07191
https://arxiv.org/abs/1806.10282
https://arxiv.org/abs/2007.04785
https://arxiv.org/abs/2008.09777
https://arxiv.org/abs/1911.09336
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1912.00848
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/1910.11858
https://arxiv.org/abs/2004.01899
https://arxiv.org/abs/1910.11858


● Learning curve extrapolation
○ Fit partial learning curve to 

parametric model [Domhan et al. 
2015]

○ Bayesian NN [Klein et al. 2017]
● Training statistics

○ Early stopping (val acc) [Elsken et 
al. 2018]

○ Sum of training losses [Ru et al. 
2020]

Learning curve based predictors

No init time, high query time 

[Elsken et al. 2018]

https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
https://ml.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/2006.04492
https://arxiv.org/abs/1808.05377


● First and second derivatives as 
features, SVR [Baker et al. 2017]

● Full LC as features, Bayesian NN 
[Klein et al. 2017]

Hybrid model-based + LC predictors
Train a model, using partial learning curve + hyperparams, to predict 
final accuracy

High init time, high query time

https://arxiv.org/abs/1705.10823
http://ml.informatik.uni-freiburg.de/papers/17-ICLR-LCNet.pdf


Compute a statistic of an 
architecture in 3-5 seconds

● Jacobian covariance [Mellor et 
al. 2020]

● Synaptic Flow [Abdelfattah et 
al. 2021]
○ SNIP [Lee et al. 2018]

“Zero-cost” proxies

Low init time, low query time

 [Mellor et al. 2020]

[Abdelfattah et al. 2021]

https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/2101.08134
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2006.04647
https://arxiv.org/abs/2101.08134


Train a set of shared weights that 
can be used by all architectures 
(the Supernetwork)

● OneShot [Bender et al. 2018]
● Random Search WS [Li & 

Talwalkar 2019]

Weight Sharing

Medium init time, low query time
 [Bender et al. 2018]

http://proceedings.mlr.press/v80/bender18a/bender18a.pdf
https://arxiv.org/abs/1902.07638
https://arxiv.org/abs/1902.07638
https://arxiv.org/abs/2006.04647
http://proceedings.mlr.press/v80/bender18a/bender18a.pdf


Outline
● Motivation
● Introduction to Performance Predictors

○ Model-based predictors
○ Learning curve based predictors
○ Zero-cost predictors
○ Weight sharing

● Experiments: 31 performance predictors
○ Stand-alone predictor experiments
○ OMNI
○ NAS experiments

● Conclusion





Notes on experiments

● Three axes of comparison: initialization time, 
query time, correlation / rank correlation metrics

● Official implementation whenever possible
● Train/test data drawn u.a.r.
● Light hyperparameter tuning 

○ Levels the playing field

○ Cross-validation is often used 
during NAS





NAS-Bench-101: a more complex search space

● Path encoding 
performs very well





Mutation-based train/test sets

● Model-based predictors perform worse. Trees are comparatively better



OMNI: The Omnipotent Predictor
● Combine best predictors from three families: SoTL + Jacob. Cov + NGBoost
● Consistent performance almost everywhere
● 20% improvement in most-competitive bottom row



OMNI Ablation

● Jacob. Cov + 
SoTL-E is 
consistent

● NGBoost needed 
for top 
performance in 
lower middle/right



NAS Experiments



So… How powerful are performance predictors?

● Largely the same trends across all 
experiments

● Combining predictors works the best
● Complex search spaces: specialized 

encodings (e.g. path encoding)



Conclusions & Future Work
● First large-scale study of performance predictors
● Four families, 31 total performance predictors
● OMNI achieves the best performance

Future work

● Zero-cost predictors that work on larger search spaces
● More sophisticated combinations of predictors + integration in NAS

Code: https://github.com/automl/NASLib

Full paper: https://arxiv.org/abs/2104.01177

Thanks!

Code: https://github.com/automl/naslib

Thanks!

https://github.com/automl/NASLib
https://arxiv.org/abs/2104.01177
https://github.com/automl/naslib



