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Quantum Methods in ML

I Quantum computers operate with exponentially large Hilbert
spaces.

I Older work: Use QC to speed-up linear algebra routines.12

I More recent: Use QC to define the function class (Quantum
Neural Network or Quantum Kernel)

1Aram W Harrow, Avinatan Hassidim, and Seth Lloyd Quantum algorithm for linear systems of equations,
Physical Review Letters, 103(15), 2009.

2Carlo Ciliberto, Andrea Rocchetto, Alessandro Rudi, and Leonard Wossnig. Statistical limits of supervised
quantum learning, Physical Review A, 102(4), 2020.
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Main Messages

I No free quantum-lunch: A model that can represent
exponentially many functions, and does not a priori favor few,
requires exponentially large training sets.

I Prior knowledge helps: We can reduce the search space with
prior knowledge. If we can encode this quantum-mechanically
but not classically, we are on track for q-advantage.

I Don’t forget to measure: Any q-advantage is lost if the
required accuracy of estimates is exponential.
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Quantum Kernels

Description of a d-qubit state via density matrix ρ (2d × 2d

hermitian matrix).

Definition (Quantum Kernel)

Let ρ : x 7→ ρ(x) be a fixed feature mapping from X to density
matrices. Then the corresponding quantum kernel is
k(x , x ′) = Tr [ρ(x)ρ(x ′)].

I Computes an inner product in an exponentially large space.

I Has to be estimated from measurement.

I The feature map is fixed independently of the data. (But
hopefully well chosen for the problem).

I We can learn functions like fM(x) = Tr [ρ(x)M].
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An Example Kernel

X = Rd .

I Dimension d = 1

|ψ(x)〉 = RX (x)|0〉
= cos(x/2)|0〉+ i sin(x/2)|1〉

ρ(x) = |ψ(x〉 〈ψ(x)|
k(x , x ′) = Tr

[
ρ(x)ρ(x ′)

]
= cos( x−x

′

2 )2

I Dimension d ∈ N

k(x , x ′) =
∏

cos2
(
xi−x ′i

2

)
This kernel is also classically feasible.
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Example (Trivial Quantum Advantage)

Let f be a scalar function that is easily computable on a quantum
device but requires exponential resources to approximate
classically. Generate data as Y = f (X ) + ε. The kernel
k(x , x ′) = f (x)f (x ′) then has an exponential advantage for
learning f from data compared to classical kernels.

A more rigorous version of this can be found in:
Liu et al. A rigorous and robust quantum speed-up in supervised
machine learning, Nature Physics 17, 1013–1017 (2021).
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Overview setting and approach

I Kernel ridge regression (KRR) for Y = f (X ) + ε

I When is learning with KRR easy? Depends on ...
I ... the target function f .
I ... the marginal distribution of X , called µ.
I ... the kernel k .

I We use spectral techniques (Mercer decomposition) to
understand learning performance

I Diversity of quantum embedding x → ρ(x) measured by
purity Tr

[
ρ2µ
]

of mean embedding ρµ =
∫
ρ(x)µ(dx)
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Main Message: No free quantum-lunch

If the encoding exhaust the whole quantum Hilbert space, i.e.,
when the purity of mean encoding ρµ decays exponentially, we
need exponentially many datapoints.

Fact: Exponential decay happens for many generic x → ρ(x)
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Projected or Biased Quantum Kernels

I Idea: define a kernel on a smaller dimensional subspace than
the whole quantum Hilbert space.3

I Data is generated via a).

f (x) = Tr
[
ρV (x)(M ⊗ id)

]
= Tr

[
ρ̃V (x)M

]
I Define the biased kernel q(x , x ′) = Tr

[
ρ̃V (x)ρ̃V (x ′)

]
3Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun

12, 2631 (2021)
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Experiments
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Main Message: Prior knowledge helps

We can reduce the search space with prior knowledge - ”how was
the problem generated?”
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Quantum Advantage?

Are such biased kernels a path to quantum advantages?

I No: So far we ignored the estimation of the quantum kernels.
I Problem: Biased kernels are exponentially close to constant!

I Why? Because ρ̃V is highly mixed.
I Requires exponentially many measurements to extract the

important information
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Main Message: Don’t forget to measure

I Generally it is not sufficient to measure an outcome to error ε,
where ε is ”something small”.

I If the required error is exponentially small, we cannot harvest
a q-advantage.
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Thank you!
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	What is a good kernel?

