Lifelong Domain Adaptation via Consolidated

Internal Distribution

Motivation

> Distributional domain shift is a dynamic and continual process in
practice which leads to model performance degradation during
execution time after an initial training phase on a source domain

Existing unsupervised domain adaptation (UDA) algorithms mostly
address domain shift for a single target domain using a source domain

Existing methods mostly require joint access to the source domain
annotated data to and the target domain unannotated data

Catastrophic forgetting is a challenge for neural networks, when
updating a neural network leads to forgetting what it has learned before

Objectives

>  We model the UDA problem in a continual learning setting, where the
model is continually updated during model execution.

We enable updating a trained model for a source domain to tackle
domain shift continually without full access to the prior domain data

>

> We consolidate the internally learned distribution by the model to
enable knowledge transfer across the domain

>

We benefit from experience replay to tackle catastrophic forgetting

Proposed Framework

> We model is trained on an initial source domain with annotated data

> The internally learned distribution for classification of input data,
modeled by network responses in a hidden layer, is estimated as a
Gaussian distribution and used to store a subset of samples in a buffer

> During model execution, it is updated when it encounters target domain
with unannotated data while consolidating the input distribution

> Samples that are stored in the memory buffer are replayed back during

model adaptation to maintain knowledge about the past domains
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Internal Distribution for Lifelong Domain Adaptation

> We learn the internally learned distribution as a multimodal Gaussian
distribution in an embedding modeled by the output of an encoder

> We consolidate the internal distribution

> We use the internal distribution to select samples
that are stored in the memory buffer

> We update the model by solving the following opt
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Results

> We use the standard UDA benchmark datasets: digit recognition,
ImageCLEF, Office-Home, and Office-Caltech

> Experiments are performed in sequential UDA setting

>Comparison is performed existing UDA methods in binary UDA setting
which can be used as an upperbound the effectiveness of our method

> Classification accuracy on the target domain is used for
comparison and learning curves are generated to study LL

> A pretrained backbone encoder is used for each dataset according
to the precedent in the literature for fair comparison
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Learning curves for sequential UDA tasks on (a,e) digit, (b,f) ImageClef, (c,g) Office-Home,
and (d,h) Office-Caltech datasets. (Best viewed in color).
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Method MU UM S+ M Method M-U UM S+ M
GtA |10] 928 4+09 908+ 1.3 924+ 09| CDAN [13] 93.9 96.9 88.5
CoGAN [4€] [91.2 £ 0.8 89.1 £ 0.8 - SHOT |47] 89.61+5.0 96.8404 919104
ADDA [3] (894402 90.1 £0.8 76.0 4+ 1.8 | CyCADA [48][95.6 0.2 96.5+0.1 904 +04

RevGrad [15] | 77.1 £ 1.8 73.0 £ 2.0 73.9 JDDA [44] 97.0 £0.2 93.1 +£0.2
DRCN [21] |91.8 £ 0.1 73.74+04 82.0+0.2| OPDA |27] 70.0 60.2 -
ETD [49] | 96.4+£0.3 96.34+0.1 979+ 04| MML [50] 77.9 60.5 62.9
Source Only | 90.1+2.6 80.24+5.7 67.312.6 LDAuCID 968 +£0.2 98.44+0.1 914 +22

Table 1: Classification accuracy for UDA tasks between MNIST, USPS, and SVHN datasets.

Method TP P11 Z-~>C C—~>T cC—+P P — C | Average
Source Only [9] | 74.8 £0.3 839+ 0.1 91.54+03 78.0+0.2 655+03 91.2+03| 808
DANN [43] [82.04+04 96.9+0.2 99.1 +0.1 79.7+04 68.2+04 674+05| 822
MADA [11] [75.04+03 879402 960+L03 888+03 752402 922403 859
CDAN [13] |[76.7+03 906+03 97.0+£04 905+04 7454+03 935+04| 8§7.1
DAN [14] [745+04 822402 928+0.2 86.3+04 69.2+04 89.8+04| 824
RevGrad [15] [75.04+0.6 86.0+03 96.2+04 87.0+05 743+0.5 91.5+0.6| 850
JAN [16] 76.8 104 83.04+L02 947402 8954+03 742403 91.74+03| B85.7
ETD [49] 81.0 91.7 97.9 93.3 79.5 95.0 89.7
LDAuCID |878+14 99.1+02 100£00 998 +0.0 888+ 1.0 995+0.3| 958

Table 2: Classification accuracy for UDA tasks for ImageCLEF-DA dataset.

Method A—C A—=P A—+R C—A C—=P C—=R P—=A P=2C PR R—+A R—+C R—=P| Average

Source Only [9] | 349 50.0 58.0 374 419 462 385 312 604 539 412 599 46.1
DANN [43] 456 593 701 470 585 o609 461 437 685 632 518 768 57.6
CDAN [13] 490 693 745 554 660 684 556 483 759 684 554 805 63.9
DAN |14] 436 570 679 458 565 604 440 436 677 631 515 743 56.3
JAN [1€6] 459 61.2 689 504 597 61.0 458 434 703 639 524 768 58.3
DIT [23] 397 504 624 395 543 531 367 392 635 522 454 704 50.6
LDAuCID 483 674 741 487 619 638 496 421 T1.3 603 476 T6.6 594

Table 3: Classification accuracy for UDA tasks of Office-Home dataset.

Method A—=C A-=D AW WA WD WC DA D-W DC CoA CoW C—D | Average
Source Only | 846  81.1 756 798 98.3 796 846 968 805 924 842 8717 85.4
DANN [43] | 878 825 718 83.0 100 813 847 990 821 933 B9S5 912 87.7
MMAN [31] | 88.7 975 96.6 94.2 100 89.4 943 993 879 937 983 981 94.6
RevGrad [15] | 85.7 892 908 93.8 98.7 869 906 983 837 928  B&.1 87.9 88.9

DAN |14 8.1 917 918 92.1 100 1.2  90.0 985 803 920 906 893 90.1
CORAL [52] | 862 912 905 88.4 100 88.6 858 979 854 930 926 895 90.8
WDGRL [53] | 87.0 93.7 895 93.7 100 894 91.7 979 902 935 9l.6 947 92.7

LDAuCID 99.6 100.0 865 96.1 100 99.8 B85 100.0 957 993 964 998 96.8

Table 4: Performance comparison for UDA tasks of Office-Caltech dataset.

Conclusions

> Tackling domain shift continually is a significant challenge in deep learning
to preserve model generalizability after an initial training phase

> Maintaining the abstract knowledge about a domain that is learned as an
internal distribution is a solution to both benefit from knowledge transfer
to avoid leaning from scratch and to tackle catastrophic forgetting

> Determining the time to adapt the model automatically, i.e., the
boundary between the domains, is the next step to extend our method

> Extensions to incremental learning setting need further exploration to
make our proposed algorithm more practical
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