

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation

Shiqi Yang⁺, Yaxing Wang⁺[‡], Joost van de Weijer⁺, Luis Herranz⁺, Shangling Jui *

† Computer Vision Center UAB, Barcelona, Spain

- *‡* PCALab, Nanjing University of Science and Technology, China
 - * Huawei Kirin Solution, Shanghai, China

NeurIPS 2021

Introduction

(Unsupervised) Domain Adaptation

Problem: source data restricted due to data privacy, intellectual property

Introduction

Source-free Domain Adaptation (SFDA) 2. Adaptation 1. Pre-training 3. Testing 11 12 1 AVELWEY 5 Source domain Target domain Target domain (labeled) (unlabeled)

Motivation

Premise: We already have the source-pretrained model

t-SNE visualization

Observation 1:Target features from source pretrained model already form some clusters**Motivation** 1:We can adopt neighborhood clustering for target adaptation

Motivation

Observation 2: Reciprocal neighbors are more likely to have the correct predicted labelMotivation 2: We should assign higher credit to reciprocal neighbors.

Method overview:
$$\mathcal{L} = -rac{1}{n_t} \sum_{t=1}^{\infty} \sum_{t=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_$$

$$\mathcal{L} = -\frac{1}{n_t} \sum_{x_i \in \mathcal{D}_t} \sum_{x_j \in \text{Neigh}(x_i)} \frac{D_{sim}(p_i, p_j)}{D_{dis}(x_i, x_j)}$$

Premise: We already have the source-pretrained model

• Nearest Neighbor Retrieving

$$\mathcal{F} = [\boldsymbol{z}_1, \boldsymbol{z}_2, \dots, \boldsymbol{z}_{n_t}]$$
 and $\mathcal{S} = [p_1, p_2, \dots, p_{n_t}]$

 \mathcal{F} stores all target features, and \mathcal{S} stores corresponding prediction scores

• Defining affinity by reciprocity

$$A_{i,j} = \begin{cases} 1 & \text{if } j \in \mathcal{N}_K^i \land i \in \mathcal{N}_M^j & \text{reciprocal} \\ r & \text{otherwise. where } r = 0.1 \end{cases}$$

 A_{ik} is the affinity value of k-th nearest neighbors of feature z_i

• Neighborhood clustering by prediction-consistency

$$\mathcal{L}_{\mathcal{N}} = -\frac{1}{n_t} \sum_{i} \sum_{k \in \mathcal{N}_K^i} A_{ik} \mathcal{S}_k^\top p_i$$

 \mathcal{N}_{K}^{i} : index set of *K* nearest neighbor of feature i

To achieve target clustering with affinity as weight.

• Self regularization

$$\mathcal{L}_{self} = -\frac{1}{n_t} \sum_{i}^{n_t} \mathcal{S}_i^\top p_i$$
 constant!

It aims to avoid the negative impact of potential neighbors.

• Diversity loss

$$\mathcal{L}_{div} = \sum_{c=1}^{C} \text{KL}(\bar{p}_{c} | | q_{c}), \text{ with } \bar{p}_{c} = \frac{1}{n_{t}} \sum_{i} p_{i}^{(c)}, \text{ and } q_{\{c=1,..,C\}} = \frac{1}{C}$$

Encouraging the prediction to be balanced to avoid degeneration solution.

• Expanded neighborhood

$$E_M(\boldsymbol{z}_i) = \mathcal{N}_M(\boldsymbol{z}_j) \; \forall j \in \mathcal{N}_K(\boldsymbol{z}_i)$$

where E_M^k contain the *M*-nearest neighbors of neighbor k in \mathcal{N}_K .

$$\mathcal{L}_E = -\frac{1}{n_t} \sum_i \sum_{k \in \mathcal{N}_K^i} \sum_{m \in E_M^k} r \mathcal{S}_m^\top p_i$$

Algorithm 1 Neighborhood Reciprocity Clustering for Source-free Domain Adaptation

Require: \mathcal{D}_s (only for source model training), \mathcal{D}_t

- 1: Pre-train model on \mathcal{D}_s
- 2: Build feature bank \mathcal{F} and score bank \mathcal{S} for \mathcal{D}_t
- 3: while Adaptation do
- 4: Sample batch \mathcal{T} from \mathcal{D}_t
- 5: Update \mathcal{F} and \mathcal{S} corresponding to current batch \mathcal{T}
- 6: Retrieve nearest neighbors \mathcal{N} for each of \mathcal{T}
- 7: Compute affinity value *A*
- 8: Retrieve expanded neighborhoods E for each of \mathcal{N}
- 9: Compute loss and update the model

10: end while

• Final objective

$$\mathcal{L} = \mathcal{L}_{div} + \mathcal{L}_{\mathcal{N}} + \mathcal{L}_{E} + \mathcal{L}_{self}$$

• Results on Office-Home with ResNet50 as backbone

Method	SF	Ar→Cl	Ar→Pr	Ar→Rw	Cl→Ar	·Cl→Pr	Cl→Rw	$Pr \rightarrow Ar$	Pr→Cl	Pr→Rw	Rw→Ar	$Rw \rightarrow Cl$	$Rw \rightarrow P$	r Avg
MCD [35]	X	48.9	68.3	74.6	61.3	67.6	68.8	57.0	47.1	75.1	69.1	52.2	79.6	64.1
CDAN [24]	X	50.7	70.6	76.0	57.6	70.0	70.0	57.4	50.9	77.3	70.9	56.7	81.6	65.8
SAFN [52]	X	52.0	71.7	76.3	64.2	69.9	71.9	63.7	51.4	77.1	70.9	57.1	81.5	67.3
Symnets [58]	X	47.7	72.9	78.5	64.2	71.3	74.2	64.2	48.8	79.5	74.5	52.6	82.7	67.6
MDD [59]	X	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
TADA [47]	X	53.1	72.3	77.2	59.1	71.2	72.1	59.7	53.1	78.4	72.4	60.0	82.9	67.6
BNM [4]	X	52.3	73.9	80.0	63.3	72.9	74.9	61.7	49.5	79.7	70.5	53.6	82.2	67.9
BDG [53]	X	51.5	73.4	78.7	65.3	71.5	73.7	65.1	49.7	81.1	74.6	55.1	84.8	68.7
SRDC [42]	X	52.3	76.3	81.0	69.5	76.2	78.0	68.7	53.8	81.7	76.3	57.1	85.0	71.3
RSDA-MSTN [10]	X	53.2	77.7	81.3	66.4	74.0	76.5	67.9	53.0	82.0	75.8	57.8	85.4	70.9
SHOT [21]	 Image: A start of the start of	57.1	78.1	81.5	68.0	78.2	78.1	67.4	54.9	82.2	73.3	58.8	84.3	71.8
NRC	\checkmark	57.7	80.3	82.0	68.1	79.8	78.6	65.3	56.4	83.0	71.0	58.6	85.6	72.2

• Results on VisDA-C with ResNet101 as backbone

Method	SF	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	Per-class
ADR [34]	X	94.2	48.5	84.0	72.9	90.1	74.2	92.6	72.5	80.8	61.8	82.2	28.8	73.5
CDAN [24]	X	85.2	66.9	83.0	50.8	84.2	74.9	88.1	74.5	83.4	76.0	81.9	38.0	73.9
CDAN+BSP [2]	X	92.4	61.0	81.0	57.5	89.0	80.6	90.1	77.0	84.2	77.9	82.1	38.4	75.9
SAFN [52]	X	93.6	61.3	84.1	70.6	94.1	79.0	91.8	79.6	89.9	55.6	89.0	24.4	76.1
SWD [19]	X	90.8	82.5	81.7	70.5	91.7	69.5	86.3	77.5	87.4	63.6	85.6	29.2	76.4
MDD [59]	X	-	-	-	-	-	-	-	-	-	-	-	-	74.6
DMRL [49]	X	-	-	-	-	-	-	-	-	-	-	-	-	75.5
MCC [15]	X	88.7	80.3	80.5	71.5	90.1	93.2	85.0	71.6	89.4	73.8	85.0	36.9	78.8
STAR [26]	X	95.0	84.0	84.6	73.0	91.6	91.8	85.9	78.4	94.4	84.7	87.0	42.2	82.7
RWOT [51]	X	95.1	80.3	83.7	90.0	92.4	68.0	92.5	82.2	87.9	78.4	90.4	68.2	84.0
3C-GAN [20]	\checkmark	94.8	73.4	68.8	74.8	93.1	95.4	88.6	84.7	89.1	84.7	83.5	48.1	81.6
SHOT [21]	\checkmark	94.3	88.5	80.1	57.3	93.1	94.9	80.7	80.3	91.5	89.1	86.3	58.2	82.9
NRC	\checkmark	96.8	91.3	82.4	62.4	96.2	95.9	86.1	80.6	94.8	94.1	90.4	59.7	85.9

• Results on PointDA (3D point-cloud dataset)

		× /			-	v	-	-
	SF	Model→Shape	$Model {\rightarrow} Scan$	Shape→Model	Shape→Scar	n Scan→Model	Scan→Shap	be Avg
MMD [25]	X	57.5	27.9	40.7	26.7	47.3	54.8	42.5
DANN [6]	X	58.7	29.4	42.3	30.5	48.1	56.7	44.2
ADDA [44]	X	61.0	30.5	40.4	29.3	48.9	51.1	43.5
MCD [35]	X	62.0	31.0	41.4	31.3	46.8	59.3	45.3
PointDAN [30]	X	64.2	33.0	47.6	33.9	49.1	64.1	48.7
Source-only		43.1	17.3	40.0	15.0	33.9	47.1	32.7
NRC	\checkmark	64.8	25.8	59.8	26.9	70.1	68.1	52.6

• Ablation study on Office-Home and VisDA

\mathcal{L}_{div}	$\mathcal{L}_{\mathcal{N}}$	\mathcal{L}_E	$\mathcal{L}_{\hat{E}}$	Α	Avg	\mathcal{L}_{div}	$\mathcal{L}_{\mathcal{N}}$	\mathcal{L}_E	$\mathcal{L}_{\hat{E}}$	Α	Acc	_
					59.5						44.6	Method&Dataset Acc
					62.1						47.8	VisDA (K=M=5) 85.9
				1	6/.1					1	74.6	VisDA w/o E ($K=30$) 84.0
v				✓	09.1 65 2					✓	$\begin{array}{c} \delta 1.3 \\ 61.2 \end{array}$	OH (K=3,M=2) 72.2
v J	• 	v ./		1	72.2	• 	• 	• 		1	85 9	OH w/o E (K =9) 69.5
✓	✓	•	\checkmark	√	69 .1	√	√	•	\checkmark	√	82.0	
	Of	fice-H	lome		I			Vis[DA			- VisDA & Office-Home

$$\mathcal{L}_{oldsymbol{\hat{E}}}$$
 : Removing duplication in expanded neighbors

• Ablation study on Office-Home and VisDA

--- Per Shared : ratio of features which have 5-nearest neighbors all sharing the same predicted label

--- Per Shared Correct : ratio of features which have 5-nearest neighbors all sharing the same correct predicted label

• Runtime experiment on VisDA (with one TITAN-Xp)

VisDA	Runtime (s/epoch)	Per-class (%)
SHOT	618.82	82.9
NRC	540.89	85.9
NRC(20% for memory bank)) 507.15	85.3
NRC(10% for memory bank)) 499.49	85.2
NRC(5% for memory bank)	499.28	85.1

Instead of storing all features, we store a fixed number of target features and prediction scores (as a queue, first in first out).

- We propose to use neighborhood clustering to tackle source-free domain adaptation problem:
 - Reciprocal and non-reciprocal neighbors
 - Self regularization
 - Expanded neighbors
- State-of-the-art performance on several 2D and 3D point cloud datasets, without access to source data.

Thank you

paper

code