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Problem

Training distributed/federated learning models is typically performed by
solving an optimization problem

min
x∈Rd

{
f (x)

def
=

1

n

n∑
i=1

fi(x)
}
,

x : model parameters

d : number of parameters (dimension)

n: number of devices/machines/nodes/workers

fi(x): loss function associated with data stored on device i
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Examples

min
x∈Rd

{
f (x)

def
=

1

n

n∑
i=1

fi(x)
}

Each device i stores m data samples {ai ,j , bi ,j}mj=1 ∈ Rd+1 (bi ,j is the
label of data ai ,j)

I Ordinary least squares: fi(x) = 1
m

∑m
j=1(aTi ,jx − bi ,j)

2

I Logistic regression: fi(x) = 1
m

∑m
j=1 log

(
1 + exp(−bi ,jaTi ,jx)

)
I SVM: fi(x) = 1

m

∑m
j=1 max

(
0, 1− bi ,ja

T
i ,jx
)

+ λ
2‖x‖

2
2
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Goal

min
x∈Rd

{
f (x)

def
=

1

n

n∑
i=1

fi(x)
}

Goal: find an ε-solution (parameters) x̂ , e.g., f (x̂)− f (x∗) ≤ ε, where
x∗ := arg minx∈Rd f (x).

For distributed optimization methods:

Bottleneck: communication cost
Common strategy: compress the communicated messages (lower
communication cost per communication round) and hope that this will
not increase the total number of communication rounds.
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Related Work

• Several recent work show that the total communication complexity
can be improved via compression. See, e.g., QSGD (Alistarh et al.,
NIPS’17), DIANA (Mishchenko et al., arXiv’19), Natural compression
(Horváth et al., arXiv’19), and MARINA (Gorbunov et al., ICML’21).

• However previous work usually lead to this kind of improvement:
Communication cost per round (- -) Rounds (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• Acceleration/Momentum of gradient-type methods is widely
studied for achieving faster convergence rates (fewer iterations).

“Can distributed gradient-type methods theoretically benefit
from the combination of compression and acceleration?”
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Related Work

• Recently, Li et al. (ICML’20)1 gave the first successful combination of
compression and acceleration by proposing ADIANA method.

• Some drawbacks:

I They only provide theoretical results for strongly convex problems.
(e.g., logistic regression is convex but not strongly convex)

I The ADIANA method is also not applicable to general convex case.

I Even if a problem is strongly convex, the modulus of strong
convexity is typically not known, or hard to estimate properly.

• Hence, one needs to design new methods and analyses to push
forward this line of research (compression + acceleration).

1Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In ICML, 2020.
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Our Contributions

• In this work, we propose and analyze a new CANITA method.

• CANITA is the first work provably combining the benefits of
compression and acceleration in the general convex setting.

• Previous work (compression without acceleration):
Communication cost per round (- -) Rounds (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• Our CANITA (compression and acceleration):
Communication cost per round (- -) Rounds (- -) ⇒ Total (- - - -)
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Our Contributions
Table: Communication rounds for finding an ε-solution f (xT )− f (x∗) ≤ ε

Algorithm General convex Remark

DIANA
(Mishchenko et al., 2019)

O
((

1 + ω
n

)
L
ε + ω

ε

) Xcompression
× acceleration

CANITA (this paper) O

(√(
1 +

√
ω3

n

)
L
ε
+ ω

(
1
ε

) 1
3

)
Xcompression
Xacceleration

L: L-smooth parameter (‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖)
ω: compression parameter (no compression implies ω = 0)

n: number of devices/machines/nodes/workers

• For example, if compression ratio is 0.1, then ω ≈ 10 (e.g. random
sparsification). Further if n = 106 and ε = 10−6, then the result of our
CANITA is O(103), while the previous state-of-the-art DIANA is O(106),

i.e., O(
√

L
ε
) vs. O(L

ε
).
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Our CANITA Algorithm

Our CANITA algorithm is based on the accelerated gradient method
ANITA (Li, 2021)2 which achieves the current state-of-the-art
convergence result for general convex problems.

2Zhize Li. ANITA: An optimal loopless accelerated variance-reduced gradient method.
arXiv:2103.11333, 2021.
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ANITA vs. CANITA
ANITA (simplified)

1: for t = 0, 1, 2, . . . do
2: y t = θtx

t + (1− θt)w t

3: Randomly pick i ∈ {1, 2, . . . , n}
4: g t = ∇fi (y t)−∇fi (w t) +∇f (w t)
5: x t+1 = x t − ηt

θt
g t

6: z t+1 = θtx
t+1 + (1− θt)w t

7: w t+1 =

{
z t+1, with probability pt

w t , with probability 1− pt

8: end for

• Compared with ANITA, our CANITA needs
to deal with the extra compression of shifted
local gradients in the distributed network.

• Hence, the obtained gradient estimator g t

is substantially different and more complicated,
which necessitates a novel proof technique.

Our CANITA

1: for t = 0, 1, 2, . . . do
2: y t = θtx

t + (1− θt)w t

3: for all nodes i = 1, 2, . . . , n do in parallel
4: Compress the shifted local gradient

C(∇fi (y t)−ht
i ) and send to the server

5: Update the local shift
ht+1
i = hti + αtC(∇fi (w t)− hti )

6: end for
7: Aggregate received compressed local gradi-

ent information:

g t = ht + 1
n

n∑
i=1

C(∇fi (y t)− hti )

ht+1 = ht + αt
1
n

n∑
i=1

C(∇fi (w t)− hti )

8: x t+1 = x t − ηt
θt
g t

9: z t+1 = θtx
t+1 + (1− θt)w t

10: w t+1 =

{
z t+1, with probability pt

w t , with probability 1− pt
11: end for
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Conclusion

• We propose the first compressed and accelerated gradient method
CANITA for distributed general convex optimization.

• We show that CANITA provably enjoys the benefits of both
compression (compressed communication in each round) and
acceleration (much fewer communication rounds).

• Previous work (compression without acceleration):
Communication cost per round (- -) Rounds (+) ⇒ Total (-)

• Our CANITA (compression and acceleration):
Communication cost per round (- -) Rounds (- -) ⇒ Total (- - - -)
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Thanks!

Zhize Li
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