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Deep learning on graph data: Graph Neural Networks

GNNs generate vertex embeddings hu for every u ∈ V which fit the graph learning task.
graph embeddings for every graph

We focus on MPNNs (=Message Passing Neural Networks)

2 / 17



MPNNs: Idea

Given a labeled graph G = (V ,E , χ)

1. Start with an initial vertex embedding for all u ∈ V

2. Iteratively update the embeddings using the neighborhood information.

Two types of information get passed:
▸ Structural information
▸ Feature information

h0
u = initial label χu

h
(l+1)
u = Update(l) (h

(l)
u ,Aggregate ({h

(l)
v ,∀v ∈ N(u)}))
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MPNNs: Strengths and limitations

Strengths

▸ Efficient

▸ Number of model parameters
independent of graph size: generalizes to
graphs of any size

▸ Perform well on variety of graph tasks

Limitations: MPNNs cannot learn
functions that depend on:

▸ The number of connected components in
a graph

▸ Presence of cliques, cycles and other
not-tree like structures

v w
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A need for more powerful MPNNs

Graph patterns are important indicators in graph data.

In social networks, cliques indicate
communities.

In molecules, cycles can indicate chemical
properties.

Possible approaches:

1. Higher-order GNNs

2. GNNs with extended features ← our contribution
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1. Higher-order GNNs

Instead of updating vertex embeddings, embeddings of k-tuples of vertices are iteratively
computed.

▸ Isomorphism types of subgraphs induced by k-tuples are included in the initial labels

▸ Patterns up to treewidth k can be detected

▸ Inefficient: require at least quadratic number of features
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2. GNNs with extended features

Idea: Adding features containing information that MPNNs cannot learn.

We propose: F-MPNNs = a type of Graph Neural Networks infused with local higher-
order graph structure information

▸ Efficiency on par with MPNNs.

▸ Stronger in expressive power than MPNNs.
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F −MPNNs

1. Select a pattern set F = {P r
1 , . . . ,P

r
l }. E.g. F = { , , , }

2. Count the local occurrences of these patterns v : hom(P r ,G v)

v
(2)

(2) (2)

(2) (2)
(2)

w
(0)

(0) (0)

(0) (0)
(0)

Example: F = { }

Why homomorphisms?

▸ Easier to compute than subgraph isomorphisms

▸ Homomorphisms counts underly the expressive power of MPNNs.

▸ Theoretically interchangeable with isomorphism counts
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3. Extend the inital vertex labels with these additional features.

h0
u = ( initial label χu,hom(P r

1 ,G
v
), . . . ,hom(P r

l ,G
v
))

4. Apply a MPNN model on these new, extended, vertex labels.

h
(l+1)
u = Update(l) (h

(l)
u ,Aggregate ({h

(l)
v ,∀v ∈ N(u)}))
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Expressive Power of F -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:

MPNNs

Homomorphism counts are equal for
every rooted tree (Dell et al, 2018).

with:

Rooted trees S r : a graph without cycles
and a designated root
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Expressive Power of F -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:

MPNNs F-MPNNs

Homomorphism counts are equal for Homomorphism counts are equal for
every rooted tree (Dell et al., 2018). every F-pattern tree (our contribution).

with:

Rooted trees S r : a graph without cycles
and a designated root

F-pattern tree T r : backbone tree S r

with vertices s ∈ VS joined with copies
of patterns in F
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Comparison with higher-order GNNs

1. Highest treewidth of patterns in F ≤ k :
F-MPNNs cannot distinguish any pair of graphs indistinguishable by kth-order GNNs

Example: {K3,K4}-MPNNs cannot distinguish any pair of graphs indistinguishable
by 3th-order GNNs

2. Highest treewidth of patterns in F > k :
There exists a pair of graphs indistinguishable by kth-order GNNs that some
F-MPNNs can distinguish

Example: There exists a pair of graphs indistinguishable by 3th-order GNNs that
some {K3,K4,K5}-MPNN can distinguish
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Pattern choice

▸ The choice of patterns in F : important & application-dependent.

▸ We prove several results offering possible choices for patterns.

Examples:

▸ {K3, . . . ,Kk}-MPNN is more expressive than {K3, . . . ,Kk−1}-MPNN for any
k > 3

▸ {C3, . . . ,C2k−1,C2k+1}-MPNN is more expressive than {C3, . . . ,C2k−1}-MPNN
for any k > 3
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Experiments: Methodology

We use the benchmark study for GNNs by Dwivedi et al. (2020).

Datasets ZINC PATTERN COLLAB

Learning Tasks Graph Regression Node Classification Link Prediction

Pattern sets {Cl ∣ 3 ≤ k ≤ 10} {Kl ∣ 3 ≤ k ≤ 5} {Kl ∣ 3 ≤ k ≤ 5}

Comparison to:

▸ Baseline models with same parameters

▸ For ZINC: the similar GSN (Bouritsas et al, 2020) approach, where isomorphisms
instead of homomorphisms are computed:
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Experiments: Some Results

GAT on ZINC with varying F

F MAE

None 0.47±0.02
{C3} 0.45±0.01
{C4} 0.34±0.02
{C6} 0.31±0.01
{C5,C6} 0.28±0.01
{C3 . . .C6} 0.23±0.01
{C3 . . .C10} 0.22±0.01

Results on the ZINC dataset with F = {Cl ∣ 3 ≤ k ≤ 10}

Dataset ZINC

Model MAE
(base)

MAE
(hom)

MAE
(iso)

GAT 0.47±0.02 0.22±0.01 0.24±0.01
GCN 0.35±0.01 0.20±0.01 0.22±0.01
GraphSage 0.44±0.01 0.24±0.01 0.22±0.01
MoNet 0.25±0.01 0.19±0.01 0.16±0.01
GatedGCN 0.34±0.05 0.14±0.01 0.14±0.01
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Experiments: More Results

Results on the COLLAB and PATTERN datasets

Dataset COLLAB PATTERN

Model Hits@50
(base)

Hits@50
(hom)

Accuracy
(base)

Accuracy
(hom)

GAT 50.32±0.55 52.87±0.87 78.83 ± 0.60 85.50±0.23
GCN 51.35±1.30 54.60±1.01 71.42 ± 1.38 82.49 ± 0.48
GraphSage 50.33±0.68 51.39±1.23 70.78 ± 0.19 85.85 ± 0.15
MoNet 49.81±1.56 51.76±1.38 85.90 ± 0.03 86.63 ± 0.03
GatedGCN 51.00 ± 2.54 51.57 ± 0.68 86.15±0.08 85.56±0.33
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Conclusions

▸ F-MPNN beat MPNNs in expressive power and are more efficient than higher-order
GNNs

▸ Adding patterns to MPNNs is a low-cost strategy for improving the learning power
of MPNNs.

▸ Pattern choice is important, but simple sets of cliques or cycles are shown to work.

▸ Experimental study shows that the performance of various MPNN models is
enhanced by additional structural vertex features
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