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Deep learning on graph data: Graph Neural Networks

GNNs generate vertex embeddings h,, for every u e V which fit the graph learning task.
graph embeddings for every graph

We focus on MPNNs (=Message Passing Neural Networks)
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MPNNSs: Idea

Given a labeled graph G = (V,E, )
1. Start with an initial vertex embedding for all ue V

2. lteratively update the embeddings using the neighborhood information.

Two types of information get passed:
» Structural information
» Feature information

hC = initial label x,
h1(1I+1) = UPdate(l) (hgl)jAggregate ({h‘(/l)’ Vve N(U)}))
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MPNNs: Strengths and limitations

Strengths Limitations: MPNNs cannot learn
» Efficient functions that depend on:
» Number of model parameters » The number of connected components in
independent of graph size: generalizes to a graph
graphs of any size » Presence of cliques, cycles and other
» Perform well on variety of graph tasks not-tree like structures
v w
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A need for more powerful MPNNs

Graph patterns are important indicators in graph data.

In social networks, cliques indicate In molecules, cycles can indicate chemical
communities. properties.
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Possible approaches:
1. Higher-order GNNs
2. GNNs with extended features < our contribution
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1. Higher-order GNNs

Instead of updating vertex embeddings, embeddings of k-tuples of vertices are iteratively
computed.
> |somorphism types of subgraphs induced by k-tuples are included in the initial labels

» Patterns up to treewidth k can be detected
» |nefficient: require at least quadratic number of features

V4
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2. GNNs with extended features

Idea: Adding features containing information that MPNNs cannot learn.

We propose: F-MPNNs = a type of Graph Neural Networks infused with local higher-
order graph structure information

» Efficiency on par with MPNNs.

» Stronger in expressive power than MPNNs.
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F — MPNNs

1. Select a pattern set F = {Pj,...,P/}. Eg. F={ &, &3, T%,8}

2. Count the local occurrences of these patterns v: hom(P", G")

(2) (0)
(2) (2) (0) (0)
(2) (2) (0) (0)

(2) (0)

Example: F={ &}

Why homomorphisms?

> Easier to compute than subgraph isomorphisms

» Homomorphisms counts underly the expressive power of MPNNs.
» Theoretically interchangeable with isomorphism counts
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3. Extend the inital vertex labels with these additional features.

h® = (initial label x,, hom(P},G"),... hom(P/,G"))
4. Apply a MPNN model on these new, extended, vertex labels.

hi'*V = update() (h(), aggregate ({hY", Vv e N'(u)}))
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Expressive Power of F-MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:
MPNNs |

Homomorphism counts are equal for
every rooted tree (Dell et al, 2018).

with:

Rooted trees S": a graph without cycles
and a designated root
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Expressive Power of F-MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:

MPNNs | F-MPNNs

Homomorphism counts are equal for Homomorphism counts are equal for

every rooted tree (Dell et al., 2018). every F-pattern tree (our contribution).
with:

Rooted trees S": a graph without cycles | F-pattern tree T': backbone tree S*

and a designated root with vertices s € Vs joined with copies

of patterns in F
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Comparison with higher-order GNNs

1. Highest treewidth of patterns in F < k:
F-MPNNs cannot distinguish any pair of graphs indistinguishable by kth-order GNNs
Example: {K3, K4}-MPNNs cannot distinguish any pair of graphs indistinguishable
by 3th-order GNNs

2. Highest treewidth of patterns in F > k:
There exists a pair of graphs indistinguishable by kth-order GNNs that some

F-MPNNs can distinguish

Example: There exists a pair of graphs indistinguishable by 3th-order GNNs that
some {K3, Ky, K5 }-MPNN can distinguish
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Pattern choice

» The choice of patterns in F: important & application-dependent.

» We prove several results offering possible choices for patterns.

Examples:
» {Ks,...,Ki}-MPNN is more expressive than {Ks3, ..., Kc_1 }-MPNN for any
k>3
> {Cg, cory Gpq, C2k+1}—MPNN is more expressive than {Cg, ceey Czk,l}-MPNN
for any k>3
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Experiments: Methodology

We use the benchmark study for GNNs by Dwivedi et al. (2020).

Datasets ZINC PATTERN COLLAB
Learning Tasks | Graph Regression | Node Classification | Link Prediction
Pattern sets {G|3<k<10} | {K/|3<k<5} {K/|3<k<b}

Comparison to:
» Baseline models with same parameters

» For ZINC: the similar GSN (Bouritsas et al, 2020) approach, where isomorphisms
instead of homomorphisms are computed:
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GAT on ZINC with varying F

Experiments: Some Results

Results on the ZINC dataset with F ={C, |3 < k <10}

F MAE

None 0.47+0.02
(G} 0.45+0.01
(G} 0.34+0.02
{Gs} 0.31+0.01
{C5, Cs} 0.28+0.01
{C3... Cﬁ} 0.23+0.01
{G...Cp} 0.22+0.01

Dataset ZINC

Model MAE MAE MAE
(base) (hom) (iso)

GAT 0.47+0.02  0.22+0.01 0.24+0.01

GCN 0.35+0.01 0.20+0.01 0.22+0.01

GraphSage 0.44+0.01 0.24+0.01 0.22+0.01
MoNet 0.25+0.01  0.19+0.01 0.16+0.01
GatedGCN 0.34+0.05 0.14+0.01 0.14+0.01
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Results on the COLLAB and PATTERN datasets

Experiments: More Results

Dataset COLLAB PATTERN

Model Hits@50 Hits@50 Accuracy Accuracy
(base) (hom) (base) (hom)

GAT 50.32+0.55 52.87+0.87 78.83 £ 0.60  85.50+0.23

GCN 51.35+1.30 54.60+1.01 | 71.42 + 1.38 82.49 + 0.48

GraphSage | 50.33+0.68 51.39+1.23 70.78 £+ 0.19 85.85 + 0.15

MoNet 49.81+1.56 51.76+1.38 85.90 + 0.03 86.63 + 0.03

GatedGCN | 51.00 + 2.54 51.57 + 0.68 | 86.15+0.08 85.56+0.33
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Conclusions

F-MPNN beat MPNNs in expressive power and are more efficient than higher-order
GNNs

Adding patterns to MPNNs is a low-cost strategy for improving the learning power
of MPNNs.

Pattern choice is important, but simple sets of cliques or cycles are shown to work.

Experimental study shows that the performance of various MPNN models is
enhanced by additional structural vertex features
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