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Why Time Series?

• Diverse applications in forecasting, clustering, signal detecting, etc.

(a) Dow Jones Industrial Average. 1 (b) Kalman filter. 2

Figure: Applications of time series.

1Source: https://commons.wikimedia.org/wiki/File:Dow_Jones_Industrial_Average.png.
2Source: https://commons.wikimedia.org/wiki/File:Basic_concept_of_Kalman_filtering.svg.
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How to Model Time Series? Vector Autoregressive Models

• Capture the relationship between multiple time-varying quantities.

xt+1 = ΓT
⋆ xt + et+1, et

iid∼ N (0,Σe), t = 0, · · · , n− 1.

• Transform into the matrix form
Y = XΓ⋆ +E,

where Y = [x1, · · · ,xn]
T , X = [x0, · · · ,xn−1]

T , and E = [e1, · · · , en]T .
• Goal of VAR models: estimate the transition matrix Γ⋆.
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Vector Autoregressive Models in High-dimensional Regime

• VAR models in high-dimensional regime: macroeconomics, genomics, etc.

(a) Macroeconomics. 3 (b) Genomics. 4

• Challenge: underdetermined problem.
• Solution: impose structure priors, such as sparsity, group-sparsity and low rank.

3Source: https://commons.wikimedia.org/wiki/File:CircularFlowEN-SVG.svg
4Source: https://commons.wikimedia.org/wiki/File:DNA_double_helix_(13081113544).jpg
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Related Work and Our Contribution

• Theory in low-dimensional settings is well established in (Lütkepohl, 2005).
• Several literature about the statistical analysis in high-dimensional settings (Loh and

Wainwright, 2012; Han and Liu, 2013; Basu and Michailidis, 2015; Melnyk and Banerjee,
2016; Basu et al., 2019).

• Other important questions:
Few literature from the algorithmic view in high-dimensional settings.
Single-structured assumption for parameters might be too simple in real applications.

• Our contribution:
Provide the non-asymptotic optimization guarantee for VAR models.
Consider both single-structured and superposition-structured transition matrices.
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Single-structured Transition Matrices

• Promote the structure of Γ⋆ by a convex regularizer R(·).

Constrained least square problem for VAR models with single-structured transition matrices

min
Γ

1

2n
||Y −XΓ||2F

s.t. R(Γ) ≤ R(Γ⋆).

• Optimize through projected gradient descent (PGD).

Here, K = {Γ | R(Γ) ≤ R(Γ⋆)} is the descent set.
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Two Assumptions

Stability (Basu and Michailidis, 2015)
The characteristic polynomial of the VAR model satisfies det(A(z)) ̸= 0 on the unit circle of the
complex plane {z ∈ C : |z| = 1}, where A(z) = Id×d − ΓT

⋆ z.

Boundness
Suppose there are positive constants κmin and κmax satisfying

0 <
κmin
2π

≤ ess inf
θ∈[−π,π]

λmin(fx(θ)) ≤ ess sup
θ∈[−π,π]

λmax(fx(θ)) ≤
κmax
2π

.

where fx(θ) is the spectral density function defined as (Basu and Michailidis, 2015)

fx(θ) :=
1

2π

∞∑
l=−∞

Σx(l)e
−ilθ, θ ∈ [−π, π].

Here we use Σx(l) = E[xtx
T
t+l], t, l ∈ Z.
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Theoretical Result

Linear convergence of PGD
Starting from a point Γ0 satisfying R(Γ0) ≤ R(Γ⋆), we perform PGD with the step size
µ = 1/κmax. If the number of measurements satisfies

√
n > 2C

κmax
κmin

(ω(C ∩ SF ) + u),

then with probability at least 1− c exp(−u2), the PGD update would obey

||Γk+1 − Γ⋆||F ≤ ρk+1||Γ0 − Γ⋆||F +
ξ

1− ρ
.

• When ρ < 1, PGD would enjoy a linear convergence rate.
• The requirement of samples is of order ω(C ∩ SF )2, which is sharp up to a constant factor.
• The temporal dependency could be characterized by κmin and κmax.
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Reduce to Independent Samples

Apply to the case where the rows of X are generated from xt
iid∼ N (0,Σx).

Linear convergence of the multi-task learning problem with independent samples
Suppose κmin ≤ λmin(Σx) ≤ λmax(Σx) ≤ κmax. We adopt PGD with the step size µ = 1/κmax
and a starting point Γ0 satisfying R(Γ0) ≤ R(Γ⋆). If the number of measurements satisfies

√
n > 2C

κmax
κmin

(ω(C ∩ SF ) + u),

then with probability at least 1− c exp(−u2) the PGD update would obey

||Γk+1 − Γ⋆||F ≤ ρk+1||Γ0 − Γ⋆||F +
ξ

1− ρ
.

Our results provide unified estimation error bounds for both independent and correlated samples.
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Superposition-structured Transition Matrices
• Suppose Γ⋆ = S⋆ +L⋆, whose structure is promoted by two decomposable norms RS(·),
RL(·).

Constrainted least square problem with superposition-structured transition matrices

min
S,L

fn(S,L) =
1

2n
||Y −X(S +L)||2F

s.t. RS(S) ≤ RS(S⋆)

RL(L) ≤ RL(L⋆).

• Optimize through alternating projected gradient descent (AltPGD).
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Two Assumptions

Decomposable norm (Negahban et al., 2012)

A regularization function R(·) is decomposable with respect to a subspace pair (M,M⊥), if

R(α+ β) = R(α) +R(β), ∀α ∈ M, β ∈ M⊥.

Guarantee for the separate estimation.

Structural incoherence (Yang and Ravikumar, 2013)

Given the subspace pairs (MS ,M⊥
S ) and (ML,M⊥

L ) for the two parameters S⋆, L⋆. Suppose

max
{
σ̄max(PMS

ΣxPML
), σ̄max(PM⊥

S
ΣxPML

),

σ̄max(PMS
ΣxPM⊥

L
), σ̄max(PM⊥

S
ΣxPM⊥

L
)
}
≤ κmin

8
,

where Σx = Σx(0) and σ̄max(Σ) = sup
V ,U∈SF

⟨V ,ΣU⟩.
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Theoretical Result

Linear convergence of AltPGD
Suppose Γ⋆ is superposition-structured and Γ⋆ = S⋆ +L⋆. Starting from points S0 and L0

satisfying RS(S0) ≤ RS(S⋆) and RL(L0) ≤ RL(L⋆), we adopt AltPGD with the step size
µ = 1/κmax. If the number of measurements satisfies

√
n > 4C

κmax
κmin

(ω(CS ∩ SF ) + ω(CL ∩ SF ) + u),

then with probability at least 1− c exp(−u2) the update would obey

||Sk+1 − S⋆||F + ||Lk+1 −L⋆||F ≤ ρk+1(||S0 − S⋆||F + ||L0 −L⋆||F) +
ξ

1− ρ
.

• When ρ < 1, AltPGD would enjoy a linear convergence rate.
• The estimation error converges to zero, when the number of samples approaches infinity.
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Reduce to Robust PCA

Write the sample matrix from n i.i.d. sample zi = ui + vi, ui ∼ N (0,L⋆) and vi ∼ N (0,S⋆)

Y =
1

n

n∑
i=1

ziz
T
i = L⋆ + S⋆ +E,

where E = 1
n

∑n
i=1 ziz

T
i − (L⋆ + S⋆) is a Wishart noise matrix.

Constrained problem for robust PCA

min
S,L

1

2
||Y − S −L||2F

s.t. ||vec(ST )||1 ≤ ||vec(ST
⋆ )||1, ||L||⋆ ≤ ||L⋆||⋆.
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Theoretical Results

Linear convergence of AltPGD for robust PCA
Consider the robust PCA model where S⋆ is a sparse matrix with s⋆ non-zero entries and L⋆ is a
r⋆-rank matrix. We adopt AltPGD with the step size µ = 1 and starting points S0 and L0

satisfying ||vec(ST
0 )||1 ≤ ||vec(ST

⋆ )||1 and ||L0||⋆ ≤ ||L⋆||⋆. If the number of measurements satisfies
√
n > C ′(

√
s⋆ log d+

√
r⋆d+ u),

then the update would obey

||Sk+1 − S⋆||F + ||Lk+1 −L⋆||F

≤ (
1

4
)k+1(||S0 − S⋆||F + ||L0 −L⋆||F) +

4

3
C||S⋆ +L⋆||

√
s⋆ log d+

√
r⋆d+ u√

n
,

with probability at least 1− c exp(−u2).
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Network Learning with a Sparse Transition Matrix
Use the true positive rate (TPR) and false alarm rate (FAR) as performance metrics.

TPR :=
♯{γ̂ij ̸= 0 and γ⋆

ij ̸= 0}
♯{γ⋆

ij ̸= 0}
, FAR :=

♯{γ̂ij ̸= 0 and γ⋆
ij = 0}

♯{γ⋆
ij = 0}

.

Table: Performance comparison between PGD and FNSL (Basu et al., 2019) on sparse network learning
problems

d = 100 Method TPR (%) FAR (%) EE Total time (s)

n = 1000
PGD 79.49 11.04 0.476 3.18
FNSL 73.64 14.19 0.489 75.59

n = 1500
PGD 83.45 8.91 0.396 5.16
FNSL 78.43 11.62 0.417 140.16

n = 2000
PGD 85.82 7.63 0.350 6.14
FNSL 81.30 10.07 0.373 183.79
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Network Learning with a Low-rank Transition Matrix
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Figure: Convergence results of PGD for low-rank transition matrices estimation.
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Network Learning with a Superposition-structured Transition
Matrix

Table: Performance comparison between AltPGD and FNSL on estimation of sparse plus low-rank
transition matrices

d = 100 Method TPR (%) FAR (%) EE Total time (s)

n = 1500
AltPGD 78.26 11.70 0.475 19.16
FNSL 71.18 15.52 0.486 309.76

n = 2000
AltPGD 81.06 10.20 0.421 26.05
FNSL 74.65 13.65 0.438 436.46

n = 2500
AltPGD 83.19 9.05 0.379 32.27
FNSL 77.49 12.12 0.399 544.08
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Network Learning with a Superposition-structured Transition
Matrix
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Figure: Convergence results of AltPGD for sparse plus low-rank transition matrices estimation.
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Granger Causal Effects among Log-returns of Stocks in S&P 500
Index
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Figure: Sparsity patterns of the transition matrix Γ̂
estimated by PGD.
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Figure: Sparsity patterns of the transition matrix Γ̂
estimated by FNSL.
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Background Modeling
Reconstruct the static background through a sequence of video frames with moving objects in the
foreground (Sobral et al., 2015).

(a) Original input frame (b) Low-rank frame

Figure: Background modeling in the Highway video.
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