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❑ Jobs arrive in a dynamic way

❑ Dispatch jobs to servers

❑ Observe reward, cost, and budget

Crowdsourcing
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Crowdsourcing Healthcare
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Goals:

❑ Achieve optimal performance:

Regret = TotalReward(π∗) - TotalReward(π).

❑ Guarantee zero violation:

Violation = TotalCost(π) - TotalBudget. 

𝑐𝑡 A𝜋(𝑡)
Environment

π

𝑐𝑡 A𝜋
∗
(𝑡)

Environment

π∗

V.S.
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Model:
1. N servers and T time slots

2. A task arrives with feature      at time slot 𝑡.

3. Rewards are unknown:

R 𝑐𝑡 , 𝑗 = < 𝜃∗, 𝜙 𝑐𝑡 , 𝑗 > + 𝜂𝑡
4.   Costs are known:

W 𝑐𝑡, 𝑗

5.   Stochastic (anytime) accumulative constraints:

E σ𝑡=1
𝜏 W 𝑐𝑡 , A(𝑡) ≤ E[σ𝑡=1

𝜏 U(𝑡)]

𝑐𝑡

𝑐𝑡



12

𝑐𝑡

R( , )

R( , )= 0.6

= 0.8

𝑐𝑡

Model:
1. N servers and T time slots

2. A task arrives with feature      at time slot 𝑡.

3. Rewards are unknown:

R 𝑐𝑡 , 𝑗 = < 𝜃∗, 𝜙 𝑐𝑡 , 𝑗 > + 𝜂𝑡
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𝑐𝑡

W( , ) = 30
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W( , ) = 10

Model:
1. N servers and T time slots

2. A task arrives with feature      at time slot 𝑡.

3. Rewards are unknown:

R 𝑐𝑡 , 𝑗 = < 𝜃∗, 𝜙 𝑐𝑡 , 𝑗 > + 𝜂𝑡
4.   Costs are known:

W 𝑐𝑡, 𝑗

5.   Stochastic (anytime) accumulative constraints:

E σ𝑡=1
𝜏 W 𝑐𝑡 , A(𝑡) ≤ E[σ𝑡=1

𝜏 U(𝑡)]
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1.  Optimistic reward estimation B𝑡
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1.  Optimistic reward estimation B𝑡
ොr(𝑐𝑡 , 𝑗) ෣reward , = 0.9

true reward , = 0.8
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1.  Optimistic reward estimation

2.  Pessimistic action

B𝑡
ොr(𝑐𝑡 , 𝑗)

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗 ොr( , )ොr( , ) >
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1.  Optimistic reward estimation

2.  Pessimistic action

3. Calibration

B𝑡
ොr(𝑐𝑡 , 𝑗)

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗
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1.  Optimistic reward estimation

2.  Pessimistic action

3. Calibration on reward

B𝑡
ොr(𝑐𝑡 , 𝑗)

reward

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗

(job, action)
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1.  Optimistic reward estimation B𝑡
ොr(𝑐𝑡 , 𝑗)

B𝑡+1

2.  Pessimistic action

reward

3. Calibration on reward

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗

(job, action)
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1.  Optimistic reward estimation B𝑡
ොr(𝑐𝑡 , 𝑗)

2.  Pessimistic action

3. Calibration on violation

violation 𝑡 + 1 = violation 𝑡 + cost 𝑡 − budget(𝑡)
5

8

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗

5 3
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1.  Optimistic reward estimation B𝑡
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3. Calibration on violation

violation 𝑡 + 1 = violation 𝑡 + cost 𝑡 − budget(𝑡)
5
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Theorem (Informal):

Pessimistic-optimistic algorithm achieves Regret(𝜏) = O( 𝜏) and 
Violation(𝜏) = 0 after some constant rounds.  

[LiuLiShiYing21] First efficient online algorithm to achieve 

optimal regret & violation (anytime). 
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Related Work Constriant Type

AD14, AD16, BKS18, CER20 Constraints imposed 

at the end of time horizon

AAT19 Anytime action constraints

PGBJ20 Anytime policy constraints
AAT19

PGBJ20 Ours
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Theorem (Informal):

Pessimistic-optimistic algorithm achieves Regret(𝜏) = O( 𝜏) and 
Violation(𝜏) = 0 after some constant rounds.  

[LiuLiShiYing21] First efficient online algorithm to achieve 

optimal regret & violation (anytime). 

Related Work Constriant Type

AD14, AD16, BKS18, CER20 Constraints imposed 

at the end of time horizon

AAT19 Anytime action constraints

PGBJ20 Anytime policy constraints
AAT19

PGBJ20 Ours

Primal-dual approach with adaptive optimism in primal and pessimism in dual.  
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Primal (action):

A t = argmax
𝑗

෣reward 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗

= argmax
𝑗

V𝑡ොr 𝑐𝑡 , 𝑗 − violation 𝑐𝑡 , 𝑗

Dual (calibration):

violation 𝑡 + 1 = violation 𝑡 + cost 𝑡 − budget(𝑡) + 𝜖𝑡

V𝑡 = 𝑡
increases

𝜖𝑡 = 1/ 𝑡
decreases

time 𝑡

pessimism

optimism
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Pessimistic-optimistic online algorithm:
- achieve optimal regret & violation (anytime). 

- a novel drift analysis framework to bridge 

regret and violation. 

Job Action
Environment

POA
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