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CONSTRAINED BANDITS: ONLINE DISPATCHING
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CONSTRAINED BANDITS: ONLINE DISPATCHING
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Goals:

1 Achieve optimal performance:
Regret = TotalReward(n") - TotalReward(m).
1 Guarantee zero violation:

Violation = TotalCost(m) - TotalBudget. @



CONSTRAINED STOCHASTIC LINEAR BANDITS

Model:

1. Nservers andT time slots
2. A task arrives with feature C; at time slot ¢.
3. Rewards are unknown:

R(Ct)j) =< 9*; ¢(Ctij) >+ Nt am-a/‘z’on ;;'

4. Costs are known: @

W(Ct'j )
5. Stochastic (anytime) accumulative constraints:

E[Xt=1 W(c, A(t))] < E[X¢=1 U(8)]
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1. Optimistic reward estimation /' I‘(Ct J )

2. Pessimistic action
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2. Pessimistic action
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PESSIMISTIC-OPTIMISTIC ONLINE ALGORITHM
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PESSIMISTIC-OPTIMISTIC ONLINE ALGORITHM

Theorem (Informal):

Pessimistic-optimistic algorithm achieves Regret(r) = O(y/7) and
Violation(7) = 0 after some constant rounds.

[LiuLiShiYing21] First efficient online algorithm to achieve
optimal regret & violation (anytime).
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Primal-dual approach with adaptive optimism in primal and pessimism in dual. @



ADAPTIVE OPTIMISM-PESSIMISM IN PRIMAL-DUAL

time t

Primal (action):

A(t) = argmax reward(c;,j) — violation(cy, j)
J

= argmax V,f(c,j) — violation(cy, j)
J

Dual (calibration):

violation(t + 1) = violation(t) + cost(t) — budget(t) + €,

pessimism

V, =i

increases

e, =1/t

decreases

optimism




CONCLUSION

Pessimistic-optimistic online algorithm:

- achieve optimal regret & violation (anytime).

- anovel drift analysis framework to bridge
regret and violation.
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