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Problem Statement Theoretical Results

Motivation: Modern networked systems are « Sparsely-changing Gaussian MRF: Data is Statistical guarantee
massive-scale, with time-varying and unknown generated from a sparsely-changing Gaussian Suppose that
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subject to: ©¢ -0 forall¢=0,1,...,T Experiment 1: Massive-scale Datasets
Available Data: fMRI measurements. Convex and tractable Inferior statistical guarantees
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connectivity network. Instance with 500M variables
Application: Brain pathology Proposed Method solved in less than an hour.

discovery (Schizophrenia).
Size: 200K nodes (voxels), 20B links. Given the approximate backward mapping F*(u,), solve:
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Brain connectivity network change with age and maturity.

Application 2: Stock Correlation Network
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Available Data: Stock prices Temporal regularization Experiment 2: Stock Correlation Network

Hidden Structure: Stock Distance from kward mapbin o
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