Learning interaction rules from multi-animal trajectories via augmented behavioral models

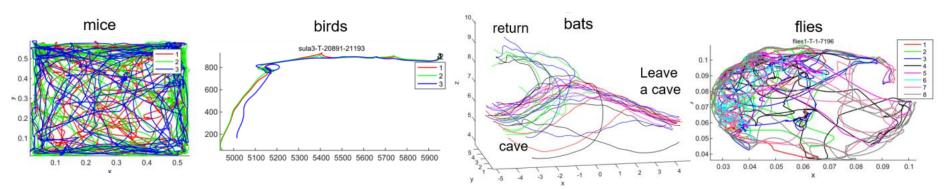
Keisuke Fujii* Nagoya University RIKEN Center for Advanced Intelligence Project JST PRESTO Naoya Takeishi University of Applied Sciences and Arts Western Switzerland RIKEN Center for Advanced Intelligence Project

Kazushi Tsutsui Nagoya University Emyo Fujioka Doshisha University Nozomi Nishiumi National Institute for Basic Biology **Ryoya Tanaka** Nagoya University

Mika Fukushiro Doshisha University Kaoru Ide Doshisha University Hiroyoshi Kohno Tokai University Ken Yoda Nagoya University

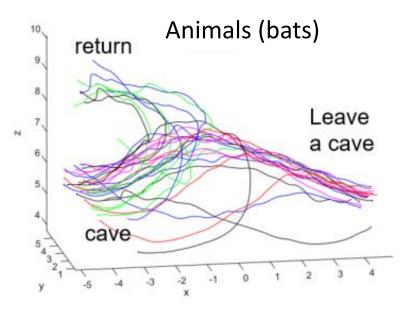
Susumu Takahashi Doshisha University

shi Shizuko Hiryu ity Doshisha University Yoshinobu Kawahara Kyushu University RIKEN Center for Advanced Intelligence Project

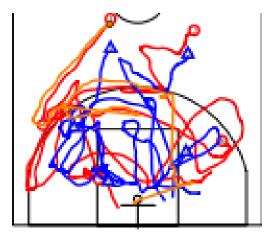


Multi-agent movement sequences

Extracting the interaction rules of biological agents from movement sequences pose challenges in various domains



Humans (in basketball)



Other: pedestrians, vehicles

Discovering the directed interaction will contribute to the understanding of the principles of biological agents' behaviors

Granger causality (GC) and problems

Granger causality [Granger, 1969] is a practical framework for exploratory analysis in various fields

• Recently: inferring GC under nonlinear dynamics [Tank+18; Khanna+19]

<u>**Problem</u></u>: the structure of the <u>generative process</u> in biological multiagent trajectories, which include <u>time-varying dynamical systems</u>, is not fully utilized in existing base models of GC (e.g., VAR and NN)</u>**

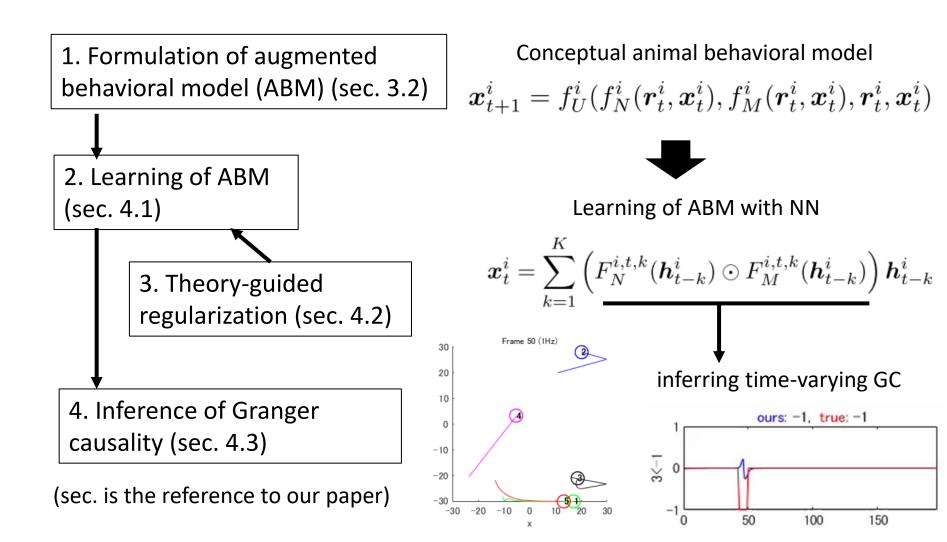
1. Ignoring the structures of such processes will lead to interpretational problems and sometimes erroneous assessments of causality

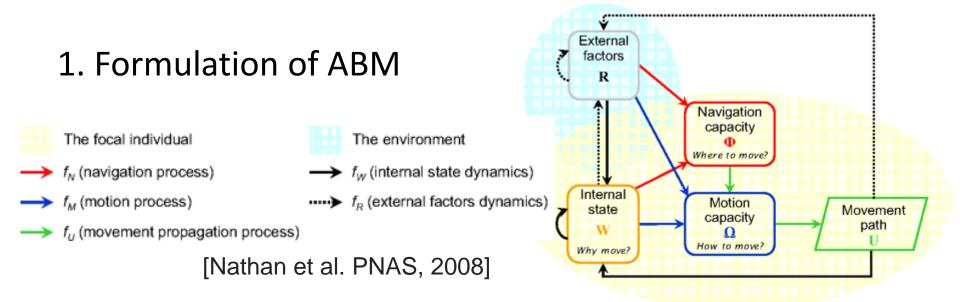
<u>solution</u>: incorporating the structures into the base model for inferring GC, e.g., <u>augmenting (inherently) incomplete behavioral models with</u> <u>interpretable data-driven models</u>, can solve these problems

2. Data-driven models sometimes detect false causality that is counterintuitive to the user of the analysis

<u>solution</u>: introducing <u>architectures and regularization to utilize scientific</u> <u>knowledge</u> will be effective for a reliable base model of a GC method

Overview of our method





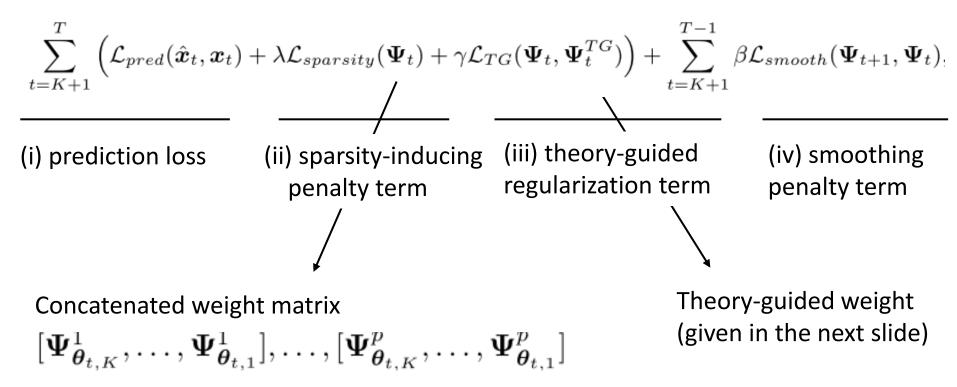
Conceptual animal behavioral model (not numerically computable)

It is closely related to self-explanatory NN [Alvarez-Melis & Jaakkola, 18] (sec. 3.3)

2. Learning of ABM

 $\begin{array}{ll} \text{Learn } \Psi^{i}_{\boldsymbol{\theta}_{t,k}} \text{ using MLP} & x^{i}_{t} = \sum_{k=1}^{K} \Psi^{i}_{\boldsymbol{\theta}_{t,k}} \boldsymbol{h}^{i}_{t-k} + \boldsymbol{\varepsilon}^{i}_{t} \\ \\ \text{where } & \Psi^{i}_{\boldsymbol{\theta}_{t,k}} = \left(F^{i,t,k}_{N}(\boldsymbol{h}^{i}_{t-k}) \odot F^{i,t,k}_{M}(\boldsymbol{h}^{i}_{t-k})\right) \end{array}$

Loss function



3. Theory-guided regularization

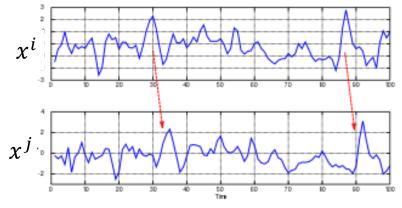
We estimate reliable GC by regularization using known scientific knowledge [Karpatne+ 17] (mainly studied on physical principles)

- Our basic idea: we utilize theory-based and data-driven prediction results and impose penalties in the appropriate situations
- 1. let \hat{x}_t be the prediction from the data
- 2. prepare some input-output pairs ($\tilde{x}_{t-k \leq t}, \tilde{x}_t$) based on scientific knowledge
 - assume that the weight Ψ_t^{TG} is uniquely determined
 - this assumption reduces the possible pairs ($\widetilde{x}_{t-k \leq t}, \widetilde{x}_t$)
- 3. When \hat{x}_t and \tilde{x}_t are similar, impose penalties on the weights such that the cause of \hat{x}_t (i.e., Ψ_t) is similar to the cause of \tilde{x}_t (i.e., Ψ_t^{TG}).
 - we assume that the cause of \widehat{x}_t is equivalent to the cause of \widetilde{x}_t at the time

Here we utilize the only intuitive prior knowledge such that the agents go straight from the current state if there are no interactions

4. Inference of Granger Causality

Recent definition of GC [Tank+18]: A variable x^i does not Granger-cause variable x^j , denoted as $x^i \nleftrightarrow x^j$, if and only if the prediction model of x^j is constant in $x_{\leq t}^i$.



(Wikipedia)

We here consider GC using the obtained $\mathbf{\Psi}_{i,j,t} \in \mathbb{R}^{K imes d imes d_r}$ In the following equation:

d: output dim. d_r: input dim. for each agent (e.g., 2D or 3D)

$$S_{i,j,t} = \underset{1 \le k \le K}{\operatorname{signmax}} \left(\underset{u=1,\dots,d}{\operatorname{median}} \left(\boldsymbol{\Psi}_{i,j,t} \right) \right) \underset{1 \le k \le K}{\operatorname{max}} \left(\| \left(\boldsymbol{\Psi}_{i,j} \right)_{t,k} \|_F \right)$$

signmax: sign of the larger value of max and min (e.g., signmax({1, 2, -3}) = -1) $\|(\Psi_{i,j})_{t,k}\|_F$ is the Frobenius norm of the matrix $(\Psi_{i,j})_{t,k} \in \mathbb{R}^{d \times d_r}$

We consider $S_{i,j,t} \approx 0$ to be non-causal relationships and $S_{i,j,t} \gg 0$ if $x^i \to x^j$

Experiments (1) Kuramoto model (synthetic data)

Kuramoto model (nonlinear oscillators)

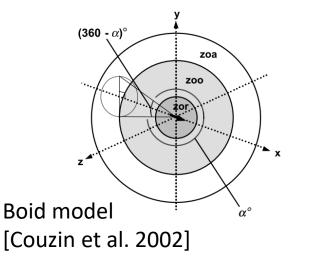
$$\frac{d\phi_i}{dt} = \omega_i + \sum_{j \neq i} \frac{k_{ij} \sin(\phi_i - \phi_j)}{1 - \sum_{j \neq i} \frac{1}{2}}$$
 unknown causal relationship

Experimental results

-		Kuramoto model						
_		Acc.	Bal. Acc.					
	Linear GC	0.655 ± 0.099	0.500 ± 0.000	0.546 ± 0.139	0.431 ± 0.143			
[Khanna+19] [Löwe+20] [Marcinkevics+20] w/o regularization	Local TE	0.335 ± 0.107	0.483 ± 0.050	0.489 ± 0.054	0.351 ± 0.104			
	eSRU 30	0.500 ± 0.092	0.500 ± 0.000	0.487 ± 0.123	0.548 ± 0.121			
	ACD [42]	0.475 ± 0.121	0.528 ± 0.115	0.605 ± 0.135	0.519 ± 0.184			
	GVAR [44]	0.495 ± 0.154	0.473 ± 0.113	0.467 ± 0.079	0.398 ± 0.115			
	ABM - \mathcal{L}_{TG}	$\textbf{0.930}{\pm 0.075}$	$\textbf{0.914} \pm \textbf{0.086}$	$\textbf{0.972} \pm \textbf{0.036}$	$\textbf{0.929} \pm \textbf{0.093}$			
	ABM (full)	0.925 ± 0.075	0.902 ± 0.098	$\textbf{0.972} \pm \textbf{0.036}$	$\textbf{0.929} \pm \textbf{0.093}$			

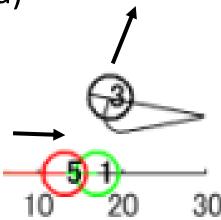
Although we used the dictionary of the functions with prior knowledge, our method accurately detected the causality w/o theory-guided regularization

Experiments (2) Boid model (synthetic data)



has only three rules: attraction, repulsion, and alignment

Here we set the boids directed preferences: true relations 1, 0,and -1 as attraction, no interaction, and repulsion



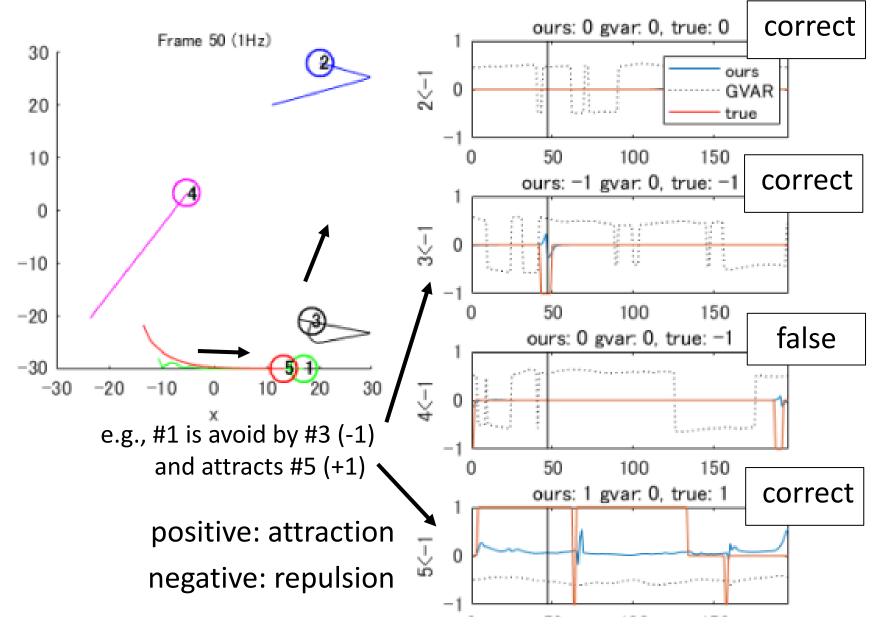
10

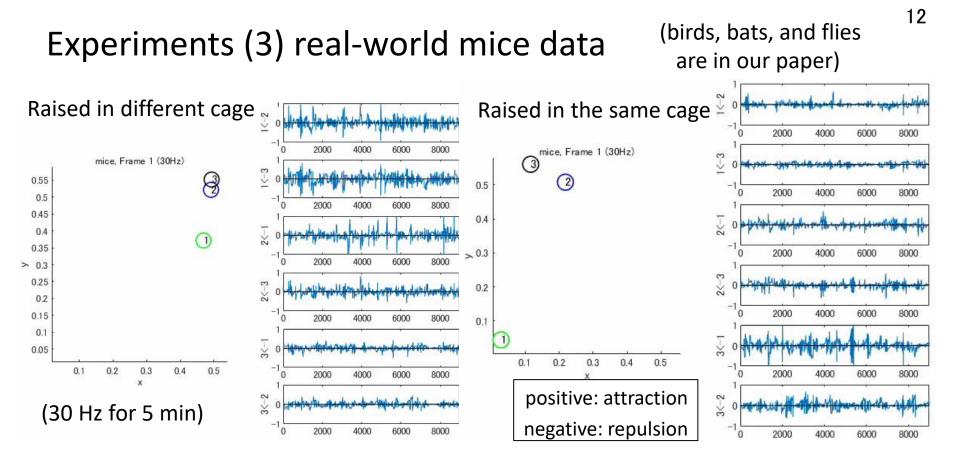
e.g., #1 attracts #5 (+1) and is avoid by #3 (-1)

Experimental results: both learning of sign and TG regularization were needed

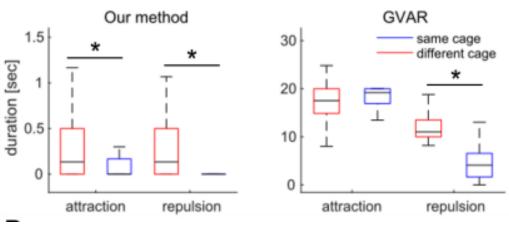
-		Boid model					
		Bal. Acc.	AUPRC	BA_{pos}	BA_{neg}		
-	Linear GC	0.487 ± 0.028	0.591 ± 0.169	0.55 ± 0.150	0.530 ± 0.165		
[Khanna+19]	Local TE	0.634 ± 0.130	0.580 ± 0.141	N/A	N/A		
	eSRU 30	0.500 ± 0.000	0.452 ± 0.166	0.495 ± 0.102	0.508 ± 0.153		
[Löwe+20]	ACD [42]	0.411 ± 0.099	0.497 ± 0.199	N/A	N/A		
[Marcinkevics+20]	GVAR [44]	0.441 ± 0.090	0.327 ± 0.119	0.524 ± 0.199	0.579 ± 0.126		
w/o learning of sign w/o regularization	ABM - F_N - \mathcal{L}_{TG}	0.500 ± 0.021	0.417 ± 0.115	0.513 ± 0.096	0.619 ± 0.157		
	ABM - $oldsymbol{F}_N$	0.542 ± 0.063	0.385 ± 0.122	0.544 ± 0.160	0.508 ± 0.147		
	ABM - \mathcal{L}_{TG}	0.683 ± 0.124	0.638 ± 0.096	0.716 ± 0.172	0.700 ± 0.143		
, ,	ABM (ours)	$\textbf{0.767} \pm \textbf{0.146}$	$\textbf{0.819} \pm \textbf{0.126}$	$\textbf{0.724} \pm \textbf{0.189}$	$\textbf{0.760} \pm \textbf{0.160}$		

Experiments (2) an example of results in boid model





- Our method extracted a larger duration in the different cage than that in the same, whereas GVAR did too much interaction.
- Our methods characterized the movement behaviors before the contacts with others [Thanos+17]



Conclusion

- We propose a framework for learning Granger causality via ABM, which can extract interaction rules from real-world multi-agent and multi-dimensional trajectory data
- We realized the theory-guided regularization for reliable biological behavioral modeling, which can leverage scientific knowledge such that "when this situation occurs, it would be like this"
- Biologically, we reformulate a well-known conceptual behavioral model, which did not have a numerically computable form, such that we can compute and quantitatively evaluate it
- Our method achieved better performance than various baselines using synthetic datasets, and obtained new biological insights using multiple datasets of mice, birds, bats, and flies

Acknowledgments: This work was supported by JSPS KAKENHI (Grant Numbers 19H04941, 20H04075, 16H06541, 25281056, 21H05296, 18H03786, 21H05295, 19H04939, JP18H03287, and 21H05300), JST PRESTO (JPMJPR20CA), and JST CREST (JPMJCR1913). For obtaining flies data, we would like to thank Ryota Nishimura at Nagoya Univ.