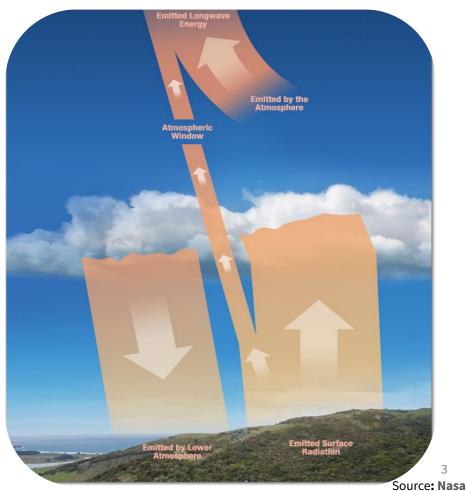

Environment and Climate Change Canada Environnement et Changement climatique Canada

ClimART

A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models


Salva Rühling Cachay*, Venkatesh Ramesh*, Jason N. S. Cole, Howard Barker, and David Rolnick. In Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2021. <u>URL</u> Code: <u>https://github.com/RolnickLab/climart</u>

Radiative transfer = Propagation of radiation (through the atmosphere, in our case)

Shortwave radiation = emitted by the sun

Longwave radiation = emitted by the Earth

<u>Goal:</u> Speed-up computationally slow component of climate & weather models

Why?

 \rightarrow Allow for more simulations.

→ Improve simulations (e.g.: run at more simulation steps).

 \rightarrow Run at higher spatial and/or temporal resolution.

<u>Goal:</u> Speed-up computationally slow component of climate & weather models

Why?

 \rightarrow Allow for more simulations.

→ Improve simulations (e.g.: run at every simulation step).

→ Run at higher spatial and/or temporal resolution.

→ Better understand & adapt to the impacts of climate change

→ Motivate stakeholders towards mitigating actions

ClimART dataset

Large-scale

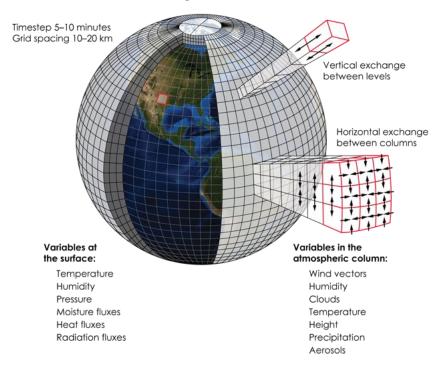
> 10 million data points & "ML-ready"

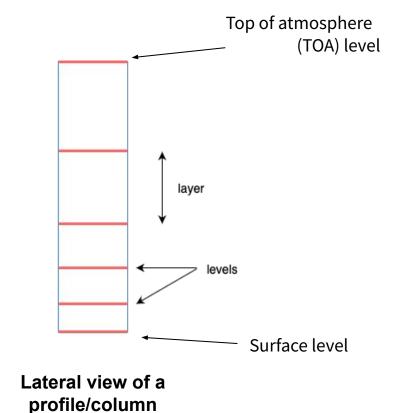
- Allow ML model failure analysis
- Standardize dataset, training setup (1979-2004), and evaluation (2007-14)

Comprehensive

Multiple data subsets with distributional shifts

- Historical conditions (1850-52)
- Future conditions (2097-99)
- Anomalies due to volcanic eruptions (eg. Mt. Pinatubo, 1991)


Challenging


Many promising directions for improving on our baselines

- Out-of-distribution generalization
- Complex underlying physics
- Accuracy ← → inference speed trade-off

Atmospheric Data Format

Weather forecast modeling

ClimART Properties

→ Drawn from the Canadian Earth System Model (CanESM5)

- Physics RT model follows independent-column assumption
- Future and pre-industrial simulations based on CMIP6 scenarios
- 8192 geographical locations (horizontal discretization)
- 50 levels (vertical discretization)

Inputs

Non-spatial information

Surface Variables				
emisrot	Surface emissivity for each surface tile			
gtrot	Surface temperature for each surface tile			
farerot	Fraction of grid of each surface tile			
salbrot	All-sky surface albedo for each surface tile			
csalrot	Clear-sky surface albedo for each surface tile			
gtrow	Grid-mean surface temperature			
pressg	Surface pressure			

1D vertical profiles of the atmospheric state

	Layer/Level Variables	Gas Variables	
shtj	Eta coordinate at layer interface	ozphs	Ozone
ong		qc	Water vapour
tfrow	Temperature at layer interfaces	_	
		co2rox	CO2 concentration
shj	Eta coordinate at layer mid-point		CH4 (Methane)
		ch4rox	concentration
dshj	Layer thickness in eta coordinate	n2orox	N2O concentration
dz	Geometric thickness of the layer	f11rox	CFC11 concentration
tlayer	Temperature at layer mid-point	f12rox	CFC12 concentration

Potential targets

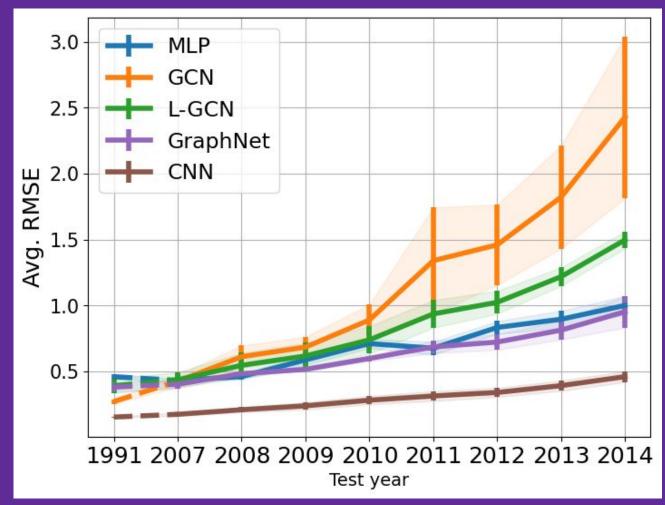
→ Pristine-sky (neither clouds nor aerosols) or clear-sky (aerosols, but no clouds) conditions

→ Long- and short-wave radiative fluxes as well as heating rates

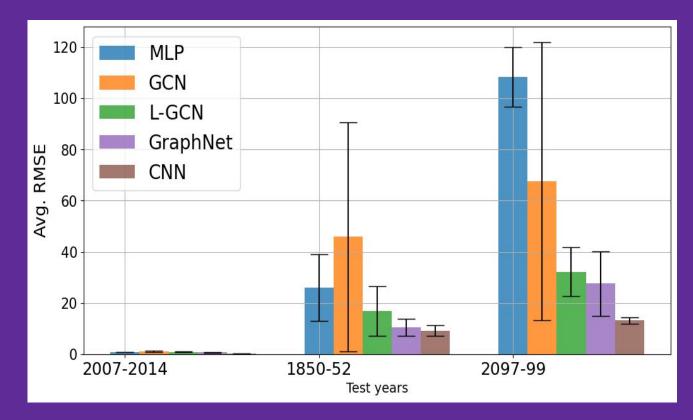
Output Variables			
rldc	Downward thermal (longwave) flux profile		
rluc	Upward thermal flux profile		
rsdc	Downward solar (shortwave) flux profile		
rsuc	Upward solar flux profile		
hrsc	Solar heating rate profile		
hrlc	Thermal heating rate profile		

Experiments

Our baselines


As in prior work:

• Fully-connected net (MLP),


as well as more structured models that we newly propose:

- Graph-based GCN and GraphNet
- Convolutional neural net (CNN)

Performance worsens as test year is farther away from training period (1990, 1999, 2003)

Historical and future climate conditions pose a challenge

Important considerations

- Trade-off between accuracy/model complexity and speed
- Trained ML emulator needs to also be validated *on-line*, running jointly with the host weather/climate model
- Weather models require little random errors, but tolerate more bias errors
- Climate models require little bias errors, but tolerate more random errors

Environment and Climate Change Canada Environnement et Changement climatique Canada

Thanks!

Salva Rühling Cachay^{*}, Venkatesh Ramesh^{*}, Jason N. S. Cole, Howard Barker, and David Rolnick. *ClimART: A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models.* In Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2021.

Code: <u>https://github.com/RolnickLab/climart</u>

Paper: https://arxiv.org/abs/2111.14671

Contacts: salvaruehling@gmail.com and venka97@gmail.com