Conference on Neural Information Processing Systems

An Empirical Study of Graph Contrastive Learning

Presented by Yanqiao ZHU

yanqiao.zhu@cripac.ia.ac.cn

@ https://SXKDZ.github.io

Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

Joint work with Yichen XU, Qiang LIU, and Shu WU

- 1. Background
- 2. A General GCL Paradigm
- 3. Experiments and Analysis
- 4. Conclusion

1. Background

- 2. A General GCL Paradigm
- 3. Experiments and Analysis
- 4. Conclusion

Representation Learning on Graphs

- Goal: efficient feature learning for machine learning on graphs
- Low-dimensional node embeddings encode both structural and attributive information.

Challenges for Deep Learning (on Graphs)

- Scarcity of labeled data
 - It is often expensive to obtain high-quality labels at scale in real world.
 - → GNNs overfit to small training data and fail to learn reusable, task-invariant knowledge.
- Out-of-distribution prediction
 - Test examples tend to be very different from training examples.
 - → GNNs extrapolate poorly.

[Sagawa et al., 2020] S. Sagawa et al., An Investigation of Why Overparameterization Exacerbates Spurious Correlations, in *ICML*, 2020.

Self-supervised learning comes to rescue!

- Self-Supervised Learning (SSL) techniques have been hugely successful in computer vision and natural language processing.
 - Improve label efficiency.
 - Improve out-of-distribution performance.

"Labels are the opium of the machine learning researcher."

--- Jitendra Malik

"The future is self-supervised!"

--- Yann LeCun

Self-supervised learning comes to rescue!

- Self-supervised methods obtain supervisory signals from the data itself, often leveraging the underlying structure in the data.
 - **Proxy tasks**: to capture dependencies among different dimensions of the data by predicting any part of it from any other observed part all without relying on labels.
- Examples:
 - Predict the future from the past.
 - Predict the masked from the visible.
 - Predict any occluded parts from all available parts.

[Jing et al., 2021] L. Jing and Y. Tian, Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey, TPAMI, 2021.

- 1. Background
- 2. A General GCL Paradigm
- 3. Experiments and Analysis
- 4. Conclusion

The Contrastive Learning Paradigm

• Contrastive Learning (CL) aims to maximize the agreement of latent representations under stochastic data augmentation.

Distinguish a pair of representations from two augmentations of the same sample (positives) apart from (n-1) pairs of representations from different samples (negatives).

[Chen et al., 2020] T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, in ICML, 2020.

Contrastive Learning on Graphs

- Characterize Graph Contrastive Learning (GCL) models:
 - Data augmentation
 - Contrasting mode
 - Contrastive objectives
 - Negative mining strategies

Design Dimensions

- Data augmentations: generate graph views
 - Topology augmentation
 - Feature augmentation

- Contrasting modes: specify positive and negative samples
 - Same-scale contrasting
 - Global-global contrast
 - Local-local contrast
 - Cross-scale contrasting
 - Global-local contrast
 - Local/global-context contrast

Design Dimensions (cont.)

- Contrastive objectives: score likelihood of sample pairs
 - Negative-sample-based or negative-sample-free

- Negative mining strategies
 - Debias selection of false negatives
 - Upweight hard negative samples

- 1. Background
- 2. A General GCL Paradigm
- 3. Experiments and Analysis
- 4. Conclusion

Experimental Configurations

Datasets and tasks

	Dataset	Domain	#Graphs	Avg. #nodes	Avg. #edges	# Features	#Classes
Unsupervised node classification	Wiki Computer CS Physics	Knowledge base Social networks Citation networks Citation networks	1 1 1 1	11,701 13,752 18,333 34,493	216,123 245,861 81,894 247,962	300 767 6,805 8,415	10 10 15 5
Unsupervised graph classification	NCI1 PROTEINS IMDB-M COLLAB	Biochemical molecules Bioinformatics Social networks Social networks	4110 1,133 1,500 5,000	29.87 39.06 13.00 74.49	32.30 72.82 65.94 2457.78		2 2 3 3

- Evaluation protocols
 - Unsupervised training followed by linear evaluation (logistic regression) on fixed embeddings

Recipes for Effective GCL (1/6)

Topology augmentation greatly affects model performance.
 Augmentation functions that produce sparser graphs generally lead to better performance.

A		No	ode		Graph				
Aug.	Wiki	CS	Physics	Computer	NCI1	PROTEINS	IMDB-M	COLLAB	
None	68.52 ± 0.39	90.76 ± 0.05	93.69 ± 0.73	80.62 ± 0.62	58.49 ± 2.21	$70.94{\pm}1.13$	45.07 ± 1.70	66.21 ± 0.92	
EA	$72.65 {\pm} 0.43$	92.73 ± 0.10	94.77 ± 0.05	83.40 ± 0.64	70.80 ± 0.55	71.17 ± 0.63	$44.80{\pm}1.43$	68.12 ± 0.63	
ER	76.38 ± 0.21	92.83 ± 0.17	95.21 ± 0.05	$87.84 {\pm} 0.76$	73.03 ± 0.48	72.55 ± 0.11	45.17 ± 1.64	68.13 ± 0.82	
EF	74.10 ± 0.67	92.99 ± 0.15	94.88 ± 0.06	86.68 ± 0.73	73.95 ± 0.49	70.64 ± 1.67	$44.15{\pm}1.21$	67.92 ± 0.93	
odo ND E ppr	$77.47 {\pm} 0.32$	$\overline{92.81 \pm 0.08}$	$95.99 {\pm} 0.12$	87.01 ± 0.54	72.12 ± 1.38	$72.54 {\pm} 0.43$	$47.03{\pm}1.14$	70.73 ± 0.78	
\vdash PPR	69.28 ± 0.22	$92.25 {\pm} 0.07$	OOM	85.06 ± 0.53	58.70 ± 0.51	71.69 ± 1.12	45.27 ± 0.85	$68.51 {\pm} 0.67$	
MKD	$69.87 {\pm} 0.12$	$92.62 {\pm} 0.14$	OOM	$82.46{\pm}0.58$	57.21 ± 0.31	71.31 ± 0.11	45.07 ± 1.16	68.09 ± 0.88	
RWS	76.74 ± 0.20	$93.48 {\pm} 0.08$	95.04 ± 0.11	87.60 ± 0.63	$75.11 {\pm} 1.14$	71.79 ± 0.82	$44.95 {\pm} 0.82$	$70.85{\pm}0.89$	
÷ FM	$76.74 {\pm} 0.34$	91.55 ± 0.11	94.12 ± 0.21	$85.05 {\pm} 0.51$	$64.87 {\pm} 0.36$	71.35 ± 0.79	45.36 ± 1.68	70.52 ± 0.35	
Feat FD FD	76.68 ± 0.16	$91.83 {\pm} 0.08$	$94.20{\pm}0.16$	$84.93 {\pm} 0.46$	$63.21 {\pm} 0.51$	$71.60{\pm}1.61$	$46.44{\pm}0.96$	$70.69{\pm}1.33$	

Recipes for Effective GCL (2/6)

Feature augmentations bring additional benefits to GCL.
 Compositional augmentations at both structure and attribute level benefit GCL most.

Recipes for Effective GCL (3/6)

 Deterministic augmentation schemes should be accompanied by stochastic augmentations.

Recipes for Effective GCL (4/6)

 Same-scale contrasting generally performs better. Downstream tasks of different granularities favor different contrasting modes.

(a) Node classification

Ob:	Wi	ki	C	S	Phys	sics	Computer		
Obj.	L–L G–L		L–L	G–L	L–L	G–L	L–L	G–L	
InfoNCE	79.09 ± 0.15	77.73 ± 0.94	$92.45{\pm}0.83$	90.60 ± 0.06	$95.95{\pm}0.92$	$93.23{\pm}0.96$	$88.15 {\pm} 0.59$	76.24 ± 0.93	
$_{ m JSD}$	$78.83 {\pm} 0.95$	78.71 ± 0.19	$92.18{\pm}1.00$	91.31 ± 0.62	$94.32 {\pm} 0.28$	94.12 ± 0.04	$82.02{\pm}0.76$	78.27 ± 0.05	
$_{\rm TM}$	$78.42 {\pm} 0.88$	76.53 ± 0.85	91.91 ± 0.31	90.11 ± 0.61	94.11 ± 0.60	92.78 ± 0.12	69.67 ± 0.88	$76.38 {\pm} 0.75$	
BL	$76.83 {\pm} 0.80$	$75.34 {\pm} 0.43$	93.10 ± 0.94	88.55 ± 0.43	$94.81 {\pm} 0.98$	94.09 ± 0.83	$87.79 {\pm} 0.94$	$85.43{\pm}0.23$	
BT	80.41 ± 0.15		$94.16 {\pm} 0.02$	_	$96.55 {\pm} 0.12$		86.86 ± 0.97		
VICReg	$80.79 {\pm} 0.12$		93.46 ± 0.08	_	95.59 ± 0.23		$86.39 {\pm} 0.32$		

(b) Graph classification

OL:		NCI1		PROTEINS			IMDB-M			COLLAB		
Obj.	L–L	$G\!\!-\!\!L$	G–G	L–L	G– L	G–G	L–L	G–L	G–G	L–L	G–L	G–G
InfoNCE	73.10 ± 0.83	$72.35{\pm}0.21$	$73.95 {\pm} 0.89$	73.28 ± 0.62	71.57 ± 0.92	75.73 ± 0.09	48.16 ± 0.64	47.36 ± 0.48	$49.69 {\pm} 0.44$	$73.25{\pm}0.34$	70.92 ± 0.22	$73.72 {\pm} 0.12$
$_{ m JSD}$	$73.56 {\pm} 0.32$	73.29 ± 0.31	70.93 ± 0.17	$73.88 {\pm} 0.31$	73.15 ± 0.42	73.67 ± 0.45	48.31 ± 1.17	$48.61{\pm}1.21$	48.31±1.35	70.40 ± 0.31	$72.62 {\pm} 0.35$	71.60 ± 0.32
TM	72.43 ± 0.21	$71.21{\pm}0.19$	72.31 ± 0.22	72.17 ± 0.51	$72.13{\pm}1.48$	73.78 ± 0.47	48.38 ± 0.20	47.75 ± 1.24	$48.58 {\pm} 0.62$	$68.85{\pm}0.45$	69.47 ± 0.20	$72.97{\pm0.47}$
BL	77.22 ± 0.13	75.97 ± 0.23	$76.70 {\pm} 0.31$	$77.75 {\pm} 0.43$	77.32 ± 0.21	$78.17 {\pm} 0.59$	$54.64{\pm}0.43$	54.21 ± 1.01	$55.32 {\pm} 0.21$	$73.95 {\pm} 0.25$	$73.35{\pm}0.24$	$74.92 {\pm} 0.33$
$_{ m BT}$	72.49 ± 0.22		70.53 ± 1.11	74.87 ± 0.68		74.38 ± 0.56	48.50 ± 0.65		49.53 ± 0.42	71.70 ± 0.53	_	73.00 ± 0.42
VICReg	72.31 ± 0.34		71.60 ± 0.36	74.61 ± 1.15		74.38 ± 0.57	46.75 ± 1.47		50.28 ± 0.55	68.88 ± 0.34	_	72.50 ± 0.31

Recipes for Effective GCL (5/6)

- Among negative-sample-based objectives, the use of InfoNCE objective leads to consistent improvements across all settings.
- Bootstrapping Latent and Barlow Twins losses obtain promising performance on par with their negative-sample-based counterparts yet reduce the computational burden without explicit negative samples.

Obj.	L–L	G–L	G–G
InfoNCE	6,311	2,977	2,271
$_{ m JSD}$	$6,\!309$	$2,\!845$	$2,\!269$
TM	$6,\!271$	2,977	$2,\!269$
BL	$2,\!235$	$2,\!247$	$2,\!187$
BT	2,419		$2,\!201$
VICReg	$2,\!465$		$2,\!232$

Memory usage (MB) on the PROTEINS dataset

Recipes for Effective GCL (6/6)

- Existing negative mining techniques based on calculating embedding similarities bring limited benefit to GCL.
- Dilemma: the harder a negative sample is, the more likely it is a positive sample.

- 1. Background
- 2. A General GCL Paradigm
- 3. Experiments and Analysis
- 4. Conclusion

Concluding Remarks

- In this work, we analyze design choices for each GCL component.
- We conduct extensive empirical studies over a comprehensive set of benchmarking tasks and datasets.
- Our rigorous empirical study reveal several interesting findings of GCL that may be helpful for developing future algorithms.

Future Directions

Open-Source Library: 😕 🍩 PyGCL

- PyGCL features modularized GCL components from published papers, standardized evaluation, and experiment management.
- Implement GRACE with few lines of code

```
aug1 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])
aug2 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])

gconv = GConv(input_dim=dataset.num_features, hidden_dim=32, activation=torch.nn.ReLU, num_layers=2)
encoder_model = Encoder(encoder=gconv, augmentor=(aug1, aug2), hidden_dim=32, proj_dim=32)
contrast_model = DualBranchContrast(loss=L.InfoNCE(tau=0.2), mode='L2L', intraview_negs=True)

z, z1, z2 = encoder_model(data.x, data.edge_index, data.edge_attr)
h1, h2 = [encoder_model.project(x) for x in [z1, z2]]
loss = contrast_model(h1, h2)
loss.backward()
optimizer.step()
```


Code Library

Paper

Slides