Conference on Neural Information Processing Systems # An Empirical Study of Graph Contrastive Learning Presented by Yanqiao ZHU yanqiao.zhu@cripac.ia.ac.cn @ https://SXKDZ.github.io Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences Joint work with Yichen XU, Qiang LIU, and Shu WU - 1. Background - 2. A General GCL Paradigm - 3. Experiments and Analysis - 4. Conclusion #### 1. Background - 2. A General GCL Paradigm - 3. Experiments and Analysis - 4. Conclusion ## Representation Learning on Graphs - Goal: efficient feature learning for machine learning on graphs - Low-dimensional node embeddings encode both structural and attributive information. #### Challenges for Deep Learning (on Graphs) - Scarcity of labeled data - It is often expensive to obtain high-quality labels at scale in real world. - → GNNs overfit to small training data and fail to learn reusable, task-invariant knowledge. - Out-of-distribution prediction - Test examples tend to be very different from training examples. - → GNNs extrapolate poorly. [Sagawa et al., 2020] S. Sagawa et al., An Investigation of Why Overparameterization Exacerbates Spurious Correlations, in *ICML*, 2020. #### Self-supervised learning comes to rescue! - Self-Supervised Learning (SSL) techniques have been hugely successful in computer vision and natural language processing. - Improve label efficiency. - Improve out-of-distribution performance. "Labels are the opium of the machine learning researcher." --- Jitendra Malik "The future is self-supervised!" --- Yann LeCun #### Self-supervised learning comes to rescue! - Self-supervised methods obtain supervisory signals from the data itself, often leveraging the underlying structure in the data. - **Proxy tasks**: to capture dependencies among different dimensions of the data by predicting any part of it from any other observed part all without relying on labels. - Examples: - Predict the future from the past. - Predict the masked from the visible. - Predict any occluded parts from all available parts. [Jing et al., 2021] L. Jing and Y. Tian, Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey, TPAMI, 2021. - 1. Background - 2. A General GCL Paradigm - 3. Experiments and Analysis - 4. Conclusion #### The Contrastive Learning Paradigm • Contrastive Learning (CL) aims to maximize the agreement of latent representations under stochastic data augmentation. Distinguish a pair of representations from two augmentations of the same sample (positives) apart from (n-1) pairs of representations from different samples (negatives). [Chen et al., 2020] T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, in ICML, 2020. #### Contrastive Learning on Graphs - Characterize Graph Contrastive Learning (GCL) models: - Data augmentation - Contrasting mode - Contrastive objectives - Negative mining strategies #### Design Dimensions - Data augmentations: generate graph views - Topology augmentation - Feature augmentation - Contrasting modes: specify positive and negative samples - Same-scale contrasting - Global-global contrast - Local-local contrast - Cross-scale contrasting - Global-local contrast - Local/global-context contrast #### Design Dimensions (cont.) - Contrastive objectives: score likelihood of sample pairs - Negative-sample-based or negative-sample-free - Negative mining strategies - Debias selection of false negatives - Upweight hard negative samples - 1. Background - 2. A General GCL Paradigm - 3. Experiments and Analysis - 4. Conclusion #### **Experimental Configurations** #### Datasets and tasks | | Dataset | Domain | #Graphs | Avg. #nodes | Avg. #edges | # Features | #Classes | |-----------------------------------|--------------------------------------|--|---------------------------------|--------------------------------------|---|------------------------------|---------------------| | Unsupervised node classification | Wiki
Computer
CS
Physics | Knowledge base Social networks Citation networks Citation networks | 1
1
1
1 | 11,701
13,752
18,333
34,493 | 216,123
245,861
81,894
247,962 | 300
767
6,805
8,415 | 10
10
15
5 | | Unsupervised graph classification | NCI1
PROTEINS
IMDB-M
COLLAB | Biochemical molecules Bioinformatics Social networks Social networks | 4110
1,133
1,500
5,000 | 29.87
39.06
13.00
74.49 | 32.30
72.82
65.94
2457.78 | | 2
2
3
3 | - Evaluation protocols - Unsupervised training followed by linear evaluation (logistic regression) on fixed embeddings ## Recipes for Effective GCL (1/6) Topology augmentation greatly affects model performance. Augmentation functions that produce sparser graphs generally lead to better performance. | A | | No | ode | | Graph | | | | | |---------------------|--------------------|-----------------------------|--------------------|--------------------|------------------------|--------------------|--------------------|--------------------|--| | Aug. | Wiki | CS | Physics | Computer | NCI1 | PROTEINS | IMDB-M | COLLAB | | | None | 68.52 ± 0.39 | 90.76 ± 0.05 | 93.69 ± 0.73 | 80.62 ± 0.62 | 58.49 ± 2.21 | $70.94{\pm}1.13$ | 45.07 ± 1.70 | 66.21 ± 0.92 | | | EA | $72.65 {\pm} 0.43$ | 92.73 ± 0.10 | 94.77 ± 0.05 | 83.40 ± 0.64 | 70.80 ± 0.55 | 71.17 ± 0.63 | $44.80{\pm}1.43$ | 68.12 ± 0.63 | | | ER | 76.38 ± 0.21 | 92.83 ± 0.17 | 95.21 ± 0.05 | $87.84 {\pm} 0.76$ | 73.03 ± 0.48 | 72.55 ± 0.11 | 45.17 ± 1.64 | 68.13 ± 0.82 | | | EF | 74.10 ± 0.67 | 92.99 ± 0.15 | 94.88 ± 0.06 | 86.68 ± 0.73 | 73.95 ± 0.49 | 70.64 ± 1.67 | $44.15{\pm}1.21$ | 67.92 ± 0.93 | | | odo ND
E ppr | $77.47 {\pm} 0.32$ | $\overline{92.81 \pm 0.08}$ | $95.99 {\pm} 0.12$ | 87.01 ± 0.54 | 72.12 ± 1.38 | $72.54 {\pm} 0.43$ | $47.03{\pm}1.14$ | 70.73 ± 0.78 | | | \vdash PPR | 69.28 ± 0.22 | $92.25 {\pm} 0.07$ | OOM | 85.06 ± 0.53 | 58.70 ± 0.51 | 71.69 ± 1.12 | 45.27 ± 0.85 | $68.51 {\pm} 0.67$ | | | MKD | $69.87 {\pm} 0.12$ | $92.62 {\pm} 0.14$ | OOM | $82.46{\pm}0.58$ | 57.21 ± 0.31 | 71.31 ± 0.11 | 45.07 ± 1.16 | 68.09 ± 0.88 | | | RWS | 76.74 ± 0.20 | $93.48 {\pm} 0.08$ | 95.04 ± 0.11 | 87.60 ± 0.63 | $75.11 {\pm} 1.14$ | 71.79 ± 0.82 | $44.95 {\pm} 0.82$ | $70.85{\pm}0.89$ | | | ÷ FM | $76.74 {\pm} 0.34$ | 91.55 ± 0.11 | 94.12 ± 0.21 | $85.05 {\pm} 0.51$ | $64.87 {\pm} 0.36$ | 71.35 ± 0.79 | 45.36 ± 1.68 | 70.52 ± 0.35 | | | Feat FD FD | 76.68 ± 0.16 | $91.83 {\pm} 0.08$ | $94.20{\pm}0.16$ | $84.93 {\pm} 0.46$ | $63.21 {\pm} 0.51$ | $71.60{\pm}1.61$ | $46.44{\pm}0.96$ | $70.69{\pm}1.33$ | | # Recipes for Effective GCL (2/6) Feature augmentations bring additional benefits to GCL. Compositional augmentations at both structure and attribute level benefit GCL most. #### Recipes for Effective GCL (3/6) Deterministic augmentation schemes should be accompanied by stochastic augmentations. #### Recipes for Effective GCL (4/6) Same-scale contrasting generally performs better. Downstream tasks of different granularities favor different contrasting modes. (a) Node classification | Ob: | Wi | ki | C | S | Phys | sics | Computer | | | |---------------------|--------------------|--------------------|--------------------|------------------|--------------------|------------------|--------------------|--------------------|--| | Obj. | L–L G–L | | L–L | G–L | L–L | G–L | L–L | G–L | | | InfoNCE | 79.09 ± 0.15 | 77.73 ± 0.94 | $92.45{\pm}0.83$ | 90.60 ± 0.06 | $95.95{\pm}0.92$ | $93.23{\pm}0.96$ | $88.15 {\pm} 0.59$ | 76.24 ± 0.93 | | | $_{ m JSD}$ | $78.83 {\pm} 0.95$ | 78.71 ± 0.19 | $92.18{\pm}1.00$ | 91.31 ± 0.62 | $94.32 {\pm} 0.28$ | 94.12 ± 0.04 | $82.02{\pm}0.76$ | 78.27 ± 0.05 | | | $_{\rm TM}$ | $78.42 {\pm} 0.88$ | 76.53 ± 0.85 | 91.91 ± 0.31 | 90.11 ± 0.61 | 94.11 ± 0.60 | 92.78 ± 0.12 | 69.67 ± 0.88 | $76.38 {\pm} 0.75$ | | | BL | $76.83 {\pm} 0.80$ | $75.34 {\pm} 0.43$ | 93.10 ± 0.94 | 88.55 ± 0.43 | $94.81 {\pm} 0.98$ | 94.09 ± 0.83 | $87.79 {\pm} 0.94$ | $85.43{\pm}0.23$ | | | BT | 80.41 ± 0.15 | | $94.16 {\pm} 0.02$ | _ | $96.55 {\pm} 0.12$ | | 86.86 ± 0.97 | | | | VICReg | $80.79 {\pm} 0.12$ | | 93.46 ± 0.08 | _ | 95.59 ± 0.23 | | $86.39 {\pm} 0.32$ | | | (b) Graph classification | OL: | | NCI1 | | PROTEINS | | | IMDB-M | | | COLLAB | | | |-------------|--------------------|------------------|--------------------|--------------------|------------------|--------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------| | Obj. | L–L | $G\!\!-\!\!L$ | G–G | L–L | G– L | G–G | L–L | G–L | G–G | L–L | G–L | G–G | | InfoNCE | 73.10 ± 0.83 | $72.35{\pm}0.21$ | $73.95 {\pm} 0.89$ | 73.28 ± 0.62 | 71.57 ± 0.92 | 75.73 ± 0.09 | 48.16 ± 0.64 | 47.36 ± 0.48 | $49.69 {\pm} 0.44$ | $73.25{\pm}0.34$ | 70.92 ± 0.22 | $73.72 {\pm} 0.12$ | | $_{ m JSD}$ | $73.56 {\pm} 0.32$ | 73.29 ± 0.31 | 70.93 ± 0.17 | $73.88 {\pm} 0.31$ | 73.15 ± 0.42 | 73.67 ± 0.45 | 48.31 ± 1.17 | $48.61{\pm}1.21$ | 48.31±1.35 | 70.40 ± 0.31 | $72.62 {\pm} 0.35$ | 71.60 ± 0.32 | | TM | 72.43 ± 0.21 | $71.21{\pm}0.19$ | 72.31 ± 0.22 | 72.17 ± 0.51 | $72.13{\pm}1.48$ | 73.78 ± 0.47 | 48.38 ± 0.20 | 47.75 ± 1.24 | $48.58 {\pm} 0.62$ | $68.85{\pm}0.45$ | 69.47 ± 0.20 | $72.97{\pm0.47}$ | | BL | 77.22 ± 0.13 | 75.97 ± 0.23 | $76.70 {\pm} 0.31$ | $77.75 {\pm} 0.43$ | 77.32 ± 0.21 | $78.17 {\pm} 0.59$ | $54.64{\pm}0.43$ | 54.21 ± 1.01 | $55.32 {\pm} 0.21$ | $73.95 {\pm} 0.25$ | $73.35{\pm}0.24$ | $74.92 {\pm} 0.33$ | | $_{ m BT}$ | 72.49 ± 0.22 | | 70.53 ± 1.11 | 74.87 ± 0.68 | | 74.38 ± 0.56 | 48.50 ± 0.65 | | 49.53 ± 0.42 | 71.70 ± 0.53 | _ | 73.00 ± 0.42 | | VICReg | 72.31 ± 0.34 | | 71.60 ± 0.36 | 74.61 ± 1.15 | | 74.38 ± 0.57 | 46.75 ± 1.47 | | 50.28 ± 0.55 | 68.88 ± 0.34 | _ | 72.50 ± 0.31 | #### Recipes for Effective GCL (5/6) - Among negative-sample-based objectives, the use of InfoNCE objective leads to consistent improvements across all settings. - Bootstrapping Latent and Barlow Twins losses obtain promising performance on par with their negative-sample-based counterparts yet reduce the computational burden without explicit negative samples. | Obj. | L–L | G–L | G–G | |---------------------|-----------|-----------|-----------| | InfoNCE | 6,311 | 2,977 | 2,271 | | $_{ m JSD}$ | $6,\!309$ | $2,\!845$ | $2,\!269$ | | TM | $6,\!271$ | 2,977 | $2,\!269$ | | BL | $2,\!235$ | $2,\!247$ | $2,\!187$ | | BT | 2,419 | | $2,\!201$ | | VICReg | $2,\!465$ | | $2,\!232$ | Memory usage (MB) on the PROTEINS dataset #### Recipes for Effective GCL (6/6) - Existing negative mining techniques based on calculating embedding similarities bring limited benefit to GCL. - Dilemma: the harder a negative sample is, the more likely it is a positive sample. - 1. Background - 2. A General GCL Paradigm - 3. Experiments and Analysis - 4. Conclusion #### **Concluding Remarks** - In this work, we analyze design choices for each GCL component. - We conduct extensive empirical studies over a comprehensive set of benchmarking tasks and datasets. - Our rigorous empirical study reveal several interesting findings of GCL that may be helpful for developing future algorithms. #### Future Directions # Open-Source Library: 😕 🍩 PyGCL - PyGCL features modularized GCL components from published papers, standardized evaluation, and experiment management. - Implement GRACE with few lines of code ``` aug1 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)]) aug2 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)]) gconv = GConv(input_dim=dataset.num_features, hidden_dim=32, activation=torch.nn.ReLU, num_layers=2) encoder_model = Encoder(encoder=gconv, augmentor=(aug1, aug2), hidden_dim=32, proj_dim=32) contrast_model = DualBranchContrast(loss=L.InfoNCE(tau=0.2), mode='L2L', intraview_negs=True) z, z1, z2 = encoder_model(data.x, data.edge_index, data.edge_attr) h1, h2 = [encoder_model.project(x) for x in [z1, z2]] loss = contrast_model(h1, h2) loss.backward() optimizer.step() ``` **Code Library** Paper **Slides**