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Representation Learning on Graphs

» Goal: efficient feature learning for machine learning on graphs

» Low-dimensional node embeddings encode both structural and
attributive information.
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Challenges for Deep Learning (on Graphs)

» Scarcity of labeled data
* It is often expensive to obtain high-quality labels at scale in real world.

« - GNNs overfit to small training data and fail to learn reusable, task-
invariant knowledge.

 Out-of-distribution prediction
» Test examples tend to be very different from training examples.
* - GNNs extrapolate poorly.

Sagawa et al., 2020] S. Sagawa et al., An Investigation of Why Overparameterization Exacerbates Spurious Correlations, in ICML,
2020.
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Self-supervised learning comes to rescue!

« Self-Supervised Learning (SSL) techniques have been hugely
successful in computer vision and natural language processing.
* Improve label efficiency.
* Improve out-of-distribution performance.

“Labels are the opium of the machine learning researcher.”
- Jitendra Malik

“The future is self-supervised!”
- Yann LeCun



Self-supervised learning comes to rescue!

» Self-supervised methods obtain supervisory signals from the
data itself, often leveraging the underlying structure in the data.
* Proxy tasks: to capture dependencies among different dimensions of

the data by predicting any part of it from any other observed part - all
without relying on labels.

« Examples: Time or space —>
 Predict the future from the past.
* Predict the masked from the visible. g
* Predict any occluded parts from all fﬁ
available parts. |

lJing et al,, 2021] L. Jing and Y. Tian, Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey, TPAMI, 2021.
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The Contrastive Learning Paradigm

 Contrastive Learning (CL) aims to maximize the agreement of
latent representations under stochastic data augmentation.

Maximize agreement
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Distinguish a pair of representations from two augmentations of the same sample
(positives) apart from (n — 1) pairs of representations from different samples (negatives).

[Chen et al.,, 2020] T. Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, in ICML, 2020.
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Contrastive Learning on Graphs

 Characterize Graph Contrastive Learning (GCL) models:
« Data augmentation
« Contrasting mode
« Contrastive objectives
* Negative mining strategies

Node Graph
representation representation

Graph

view

---> Local-local contrasting
---> Global-local contrasting

---> Global-global contrasting
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Design

Dimensions

» Data augmentations: generate graph views

« Topology augmentation
» Feature augmentation
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» Contrasting modes: specify positive and negative samples

« Same-scale contrasting Graph
- contrast Input )
graph 4 )
» Local-local contrast - \ ]% ) wﬁ%
« Cross-scale contrasting
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Design Dimensions (cont.)

 Contrastive objectives: score likelihood of sample pairs
» Negative-sample-based or negative-sample-free

[ Contrastive loss ] Projection Prediction

Viewl [OQOO0O q() O000 ~. Online

\

O !
0000 0000 Ol0i0000 view2 [OO00O0 0000}« ” Target

Positives Anchor Negatives Sg

* Negative mining strategies i Mg
» Debias selection of false negatives
« Upweight hard negative samples -
R || L |-|mlluu ........

Cosine similarity (hardness) of negative pairs
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Experimental Configurations

« Datasets and tasks

Dataset Domain #Graphs Avg. #nodes Avg. #edges #Features F#Classes
) Wiki Knowledge base 1 11,701 216,123 300 10
Unsuperwsed node Computer Social networks 1 13,752 245,861 767 10
classification CS Citation networks 1 18,333 81,894 6,805 15
Physics Citation networks 1 34,493 247,962 8,415 5
. NCI1 Biochemical molecules 4110 29.87 32.30 — 2
UnsuperVISed graph PROTEINS Bioinformatics 1,133 39.06 72.82 29 2
classification IMDB-M Social networks 1,500 13.00 65.94 — 3
COLLAB Social networks 5,000 74.49 2457.78 — 3

 Evaluation protocols

« Unsupervised training followed by linear evaluation (logistic
regression) on fixed embeddings
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Recipes for Effective GCL (1/6)

» Topology augmentation greatly affects model performance.
Augmentation functions that produce sparser graphs generally
lead to better performance.

A Node Graph

ug.

s Wiki CS Physics Computer NCI1 PROTEINS  IMDB-M COLLAB
None 68.5240.39 90.76+0.05 93.69+0.73 80.62+0.62 58.49+2.21 70.94+1.13 45.07+1.70 66.21+0.92
EA 72.65+0.43 92.73+0.10 94.77+0.05 83.40+0.64 70.80+0.55 71.17+0.63 44 .8041.43 68.1240.63
ER 76.38+0.21 92.83+0.17 95.2140.05 87.84+0.76 73.03+0.48 72.55+0.11 45.17+1.64 68.1340.82

S EF 74.1040.67 92.99+0.15 94 .88+0.06 86.68+0.73 73.95+0.49 70.64+1.67 44.15+1.21 67.924+0.93

& ND  77.47+0.32 92.81+0.08 95.9940.12 87.01+0.54  72.12+1.38  72.544+0.43 47.03+1.14 70.7340.78

= PPR 69.2840.22 92.2540.07 OOM 85.064+0.53 H8.704+0.51 71.6941.12 45.2740.85 68.514+0.67
MKD 69.87+0.12 92.62+0.14 OOM 82.46+0.58 57.2140.31 71.3140.11 45.07+1.16 68.09+0.88
RWS 76.7440.20 93.48+0.08 95.04+0.11 87.60+0.63 75.11+1.14 71.7940.82 44.954+0.82 70.8540.89

< FM 76.744+0.34 91.55+0.11 94.12+0.21 85.05+0.51 64.87+0.36 71.35+0.79 45.36+1.68 70.524+0.35
= FD 76.68+0.16 91.83+0.08 94.20+0.16 84.93+0.46 63.21+0.51 71.60+1.61 46.4440.96 70.69+1.33
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Recipes for Effective GCL (2/6)

» Feature augmentations bring additional benefits to GCL.
Compositional augmentations at both structure and attribute
level benefit GCL most
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»
Recipes for Effective GCL (3/6)

» Deterministic augmentation schemes should be accompanied

by stochastic augmentations.
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Recipes for Effective GCL (4/6)

« Same-scale contrasting generally performs better. Downstream

tasks of different granularities favor different contrasting

modes.

(a) Node
classification

(b) Graph
classification

December 10, 2021

Obi Wiki CS Physics Computer
) L-L G-L L-L G-L L-L G-L L-L G-L
InfoNCE 79.0940.15 77.7340.94 92.4540.83 90.604+0.06 95.95+0.92 93.23+0.96 88.154+0.59 76.24+0.93
JSD 78.8340.95 78.71+0.19 92.184+1.00 91.314+0.62 94.3240.28 94.124+0.04 82.02+0.76  78.27+0.05
™ 78.4240.88 76.53+0.85 91.9140.31 90.11+0.61 94.1140.60 92.78+0.12 69.67+0.88 76.384-0.75
BL 76.83+£0.80  75.34+0.43  93.10+£0.94  88.554+0.43  94.814+0.98 94.094+0.83 87.79+0.94 85.43+0.23
BT 80.4140.15 — 94.164-0.02 — 96.554-0.12 — 86.86+0.97 —
VICReg 80.7940.12 — 93.464-0.08 — 95.5940.23 — 86.3940.32 —
Obi NCI1 PROTEINS IMDB-M
> L L GL GG LL G L GG LL GL GG LL GG
InfoNCE  73.10+0.83  72.354+0.21 73.9540.89  73.28+0.62 71.574+0.92 75.734+0.09 48.16+0.64 47.364+0.48  49.694+0.44  73.25+0.34 73.7240.12
JSD 73.564+0.32 73.29+0.31  70.93+0.17 73.8840.31 73.15+0.42  73.67+0.45 48.31+1.17  48.61+1.21 48.31+1.35 70.40+0.31 71.60+0.32
™ 72.4340.21  71.21+£0.19  72.31+0.22 72174051  72.13+1.48 73.78+0.47  48.3840.20 47.754+1.24  48.584+0.62  68.85+0.45 72.9740.47
BL 77.2240.13 75.974+0.23 76.70+0.31 77.75+0.43 77.32+0.21 78.174+0.59 54.6440.43 54.21+1.01 55.3240.21 73.95+0.25 74.9240.33
BT 72.49+0.22 — 70.53+1.11 74.87+0.68 — 74.38+0.56 48.5040.65 — 49.5340.42 71.70+0.53 73.00+£0.42
VICReg  72.31+0.34 — 71.60+0.36 74.61+£1.15 — 74.38+0.57 46.7541.47 — 50.28+0.55 68.88+0.34 72.50+£0.31
An Empirical Study of Graph Contrastive Learning 18



-

Recipes for Effective GCL (5/6)

« Among negative-sample-based objectives, the use of INfoNCE
objective leads to consistent improvements across all settings.

» Bootstrapping Latent and Barlow Twins losses obtain promising
performance on par with their negative-sample-based
counterparts yet reduce the computational burden without
explicit negative samples.

Obj, LL GL GG

InfoNCE 6,311 2,977 2271
JSD 6,309 2,845 2,269
T™ 6271 2977 2,269
BL 2,235 2247 2,187
BT 2419 — 2201

VICReg 2,465 — 2,232

Memory usage (MB) on the PROTEINS dataset




Recipes for Effective GCL (6/6)

 Existing negative mining techniques based on calculating
embedding similarities bring limited benefit to GCL.

* Dilemma: the harder a negative sample is, the more likely it is a
positive sample.
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Concluding Remarks

* In this work, we analyze design choices for each GCL
component.

» We conduct extensive empirical studies over a comprehensive
set of benchmarking tasks and datasets.

 Our rigorous empirical study reveal several interesting findings
of GCL that may be helpful for developing future algorithms.



" Future Directions

Principled understanding of the performance gap

between pretext and downstream tasks

Structure-aware negative sampling

Objectives for large-scale graph datasets

GCL for complex graphs

December 10, 2021 An Empirical Study of Graph Contrastive Learning
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Open-Source Library: = @ PyGCL

* PyGCL features modularized GCL components from published
papers, standardized evaluation, and experiment management.

* Implement GRACE with few lines of code

A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])
A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)]1)

augl
aug2

gconv = GConv(input_dim=dataset.num_features, hidden_dim=32, activation=torch.nn.RelLU, num_layers=2)
encoder_model = Encoder(encoder=gconv, augmentor=(augl, aug2), hidden_dim=32, proj_dim=32)
contrast_model = DualBranchContrast(loss=L.InfoNCE(tau=0.2), mode='L2L', intraview_negs=True)

z, z1, z2 = encoder_model(data.x, data.edge_index, data.edge_attr)
hl, h2 = [encoder_model.project(x) for x in [z1l, z2]]

loss = contrast_model(hl, h2)

loss.backward()

optimizer.step()
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