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Symbolic Regression: A classical Problem

Given a dataset (X,y), where each point X; € R” and y; € R, find an
analytic expression f : R™ — R such that f(X;) ~ y;
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= Symbolic Regression (SR) leads to interpretable models with high performance and
generalizability, even in the small dataset regime Brolgs et al., 2021; Wilstrup et al., 2021

= SR has received lot of attention in recent years cranmer et al., 2020; Udrescu et al., 2020; Petersen et al.,
2021; Landajuela et al., 2021; Biggio et al., 2021 ; Kamienny et al., 2022 ; ...
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Symbolic Regression as Discrete Optimization

= Using expression trees, the problem becomes a discrete optimization one:

[ argmax |R(ET(7y,...,7,))] with 7'7;EEZ{—I—,...,Sin,...,xl...}]

n<N,T1,...,Tn

Maintains 1:1 correspondence
between tree and sequence
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= Exponentially large search space MWSR is NP-hard (Virgolin et al.,
2022), i.e., the search for the best solution can be intractable.
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Solution Strategies for Symbolic Regression

= Qver the last few years, there are now several quite different approaches to SR:

. . ) Exploits (X, y) data to simplify a
* Problem Slmpllflcatlon SR problem into lower-dimensional

Udrescu et al., 2019 and 2020 sub-problems.

i Neural network learns to search over
Neural-guided Search time, with the ability to incorporate

Bello et al., 2017; Petersen et al., 2021 in situ constraints.

Koza, 1994; Mundhenk et al., 2021; ...
Leverages big data, learning from

Large Scale Pre-training many other problems by conditioning
on the (X, y) data.

Biggio et al., 2021; Kamienny et al., 2022; ...
Quickly learn sparse coefficients

. . Rapidly explores the search space §
" Genetic Programmmg via genetic operators.

= Linear Regression of a linear combination of basis
Legendre,1805; Brunton et al., 2016; ... functions.
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uDSR: A Unified framework for Deep Symbolic
Regression
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uDSR: A Unified framework for Deep Symbolic

Regression

Py (X,y)2 € R™*2 x R"

DSR, conditioned on P, data (X,y)s via
LSPT, samples candidate solutions to Py
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ATF identifies multiplicative
separability, simplifying P
into Py and Po
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yielding f~1(y)

Solve for 8 using sparse
linear regression
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token is given by:
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Results on SRBench

= Benchmarking using the open-source pipeline SRBench (La Cava et al.,2021) (252 datasets

from PMLB):
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= uDSR outperforms all other 14 benchmarked methods in

symbolic and accuracy recovery for ground-truth problems ° ¥ °

R? Test Rank

20

= uDSR falls on the Pareto frontier (accuracy-complexity) on black-box SR problems
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