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Background
• Why can deep, over-parameterized neural networks trained with gradient 

descent-like optimizers generalize so well?

• One explanation: implicit regularization
• Gradient descent implicitly regularizes towards “good” solutions
• Depth acts as an accelerative pre-conditioning during optimization

• Previous works1 have shown how in linear networks, gradient descent implicitly 
regularizes towards low-rank solutions in matrix completion, whose effect 
becomes stronger with depth (i.e., deeper networks)

1. “Implicit Regularization in Deep Matrix Factorization” Arora, Cohen et al. (2019)



Key Questions

• Can we mimic the effects of implicit regularization with help from an explicit 
penalty (i.e., explicit regularization?)

• Do the interactions between the implicit bias of an optimizer and an explicit 
penalty matter? 
• Previous works focus largely on gradient descent, but it may be natural to expect that 

different optimizers have different inductive biases
• Given this, different optimizers can interact differently with explicit penalties

• We try to shed light on the questions above by considering the following 
explicit regularizer on matrix completion tasks: ‖𝑊‖∗/ ‖𝑊 ⃦"



Key Findings

• Our proposed penalty allows a depth 1 linear network to generalize as 
well if not better than deeper linear networks

• However, this only takes effect when training with Adam (not gradient 
descent!)

• At higher depths (depth > 1), networks trained with Adam and the 
proposed penalty show a degree of depth invariance: all depths are now 
able to achieve low generalization error and recover rank perfectly



Setup

min
!

𝐿 𝑊 ≜ min
!

⃦𝑊 −𝑊∗‖# + 𝜆 𝑅(𝑊)Loss function:

• 𝑊∗ is the ground-truth matrix
• 𝑊 = 𝑊! …𝑊" is the linear neural network of depth 𝑁 ≥ 1

• 𝑁 = 1 corresponds to a convex problem (i.e., depth 1 or no depth)
• 𝑁 = 2 corresponds to a shallow linear network (i.e., depth 2)
• 𝑁 ≥ 3 corresponds to deep matrix factorization or a deep linear network (depth > 2)

• 𝑅 𝑊 is the explicit penalty or regularizer, 𝜆 ≥ 0 is the regularization strength
• In our work, our proposed penalty is a ratio of the nuclear to the Frobenius norm: ‖𝑊‖∗/ ‖𝑊 ⃦$

Matrix Completion
• Having observed some portion of a matrix 𝑊∗ (typically low-rank), the goal is to 

recover the remaining entries (i.e., low test error) and/or the rank of the original 
matrix



Adam

• During training, Adam requires a sufficiently deep network (above depth 3) in order to generalize
well and reduce rank down to the rank of the ground-truth matrix (i.e., perfect rank recovery)



Adam + penalty
• However, combined with our proposed 

penalty, Adam shows a degree of depth 
invariance: generalizing well and recovering 
rank at all depths…

• Even at depth 1!
Degenerate Network: Depth 1

Deep Linear Network: Depths 2/3/4/5



Results (synthetic data) 

• A depth 1 network trained with Adam + penalty can outperform a variety of other methods in both 
generalization error and rank reduction/recovery---and also do so with less training data



Results (real-world data)

• On MovieLens100K, a depth 1 linear network trained with Adam + penalty (in bold) can improve performance 
considerably over gradient descent alone

• Surprisingly, a depth 1 linear network with Adam + penalty can come close to or even outperform other more 
complex methods---without any non-linearities, side information, extra features, deep networks, etc.



Conclusion

• Takeaway: Combining Adam’s own implicit bias with our proposed 
penalty can enable more efficient learning

• What’s next?
• Extensions/applicability to non-linear networks for other tasks?
• Convergence rates
• How does this fit in with other stylized facts and works?



Thank you!


