Combining Implicit & Explicit
Regularization for Efficient
Learning in Deep Networks

Dan Zhao

Background

* Why can deep, over-parameterized neural networks trained with gradient
descent-like optimizers generalize so well?

* One explanation: implicit regularization
* Gradient descent implicitly regularizes towards “good” solutions
* Depth acts as an accelerative pre-conditioning during optimization

* Previous works! have shown how in linear networks, gradient descent implicitly
regularizes towards low-rank solutions in matrix completion, whose effect
becomes stronger with depth (i.e., deeper networks)

Key Questions

* Can we mimic the effects of implicit regularization with help from an explicit
penalty (i.e., explicit regularization?)

* Do the interactions between the implicit bias of an optimizer and an explicit
penalty matter?

* Previous works focus largely on gradient descent, but it may be natural to expect that
different optimizers have different inductive biases

* Given this, different optimizers can interact differently with explicit penalties

* We try to shed light on the questions above by considering the following
explicit regularizer on matrix completion tasks: |W||./ [|W]||r

Key Findings

* Our proposed penalty allows a depth 1 linear network to generalize as
well if not better than deeper linear networks

* However, this only takes effect when training with Adam (not gradient
descent!)

* At higher depths (depth > 1), networks trained with Adam and the
proposed penalty show a degree of depth invariance: all depths are now
able to achieve low generalization error and recover rank perfectly

Setup

Matrix Completion
* Having observed some portion of a matrix W™ (typically low-rank), the goal is to

recover the remaining entries (i.e., low test error) and/or the rank of the original
matrix

Loss function: min L(W) & min [[W — W*||>+ AR(W)

W™ is the ground-truth matrix
W = Wy ... Wj is the linear neural network of depth N > 1
e N =1 corresponds to a convex problem (i.e., depth 1 or no depth)
e N = 2 corresponds to a shallow linear network (i.e., depth 2)
e N = 3 corresponds to deep matrix factorization or a deep linear network (depth > 2)

R(W) is the explicit penalty or regularizer, A = 0 is the regularization strength
* In our work, our proposed penalty is a ratio of the nuclear to the Frobenius norm: ||W||./ ||W||r

Adam

Adam: test error Adam: effective rank
0
10 T\ 70 -
60 -
1071 -
- 209 depth
= € 40 —
g 1071 o N
30 A 4
1073 1 20 A —_— 5
- 10 1
10_4 ol L] T T T T L] Ll L) L L L] L] T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
iteration led iteration led

* During training, Adam requires a sufficiently deep network (above depth 3) in order to generalize
well and reduce rank down to the rank of the ground-truth matrix (i.e., perfect rank recovery)

Adam + penalty

Deep Linear Network: Depths 2/3/4/5

Adam: test error

100 _

0.0

0.5

1.0

1.5
iteration

2.0

2:5

3.0
le4d

Degenerate Network: Depth 1

Adam: test error

-

0.0

0.5

1.0

1.5
iteration

2.0

2.5

3.0
le4d

rank

80

60 1

40 1

20 1

Adam: effective rank

0.0 0.5 1.0 15 20 25 3.0
iteration le4d

Adam: effective rank

00 05 10 15 20 25 3.0
iteration led

depth

(O I S OV

—
— 0.01

* However, combined with our proposed
penalty, Adam shows a degree of depth
invariance: generalizing well and recovering
rank at all depths...

* Even at depth 1!

Results (synthetic data)

Matrix Completion (Test Error) Matrix Completion (Effective Rank)
10_1] N‘A\ 30 -
=
S 1073 1 ©
@ v 101
-) —e— CP
£ 10 : et
% 54 &= ~0 | —e— OPT
—o— Adam:1+R
10-7 1 31 w —e— GD:3
1500 1750 2000 2250 2500 2750 3000 3250 1500 1750 2000 2250 2500 2750 3000 3250
sample size sample size

Figure 4: Comparative performance in generalization error and rank minimization for rank-5 matrix completion
(100 x 100). z-axis stands for the number of observed entries (out of 10° entries) and shaded regions indicate
error bands. Adam:1+R refers to a depth 1 network trained with Adam and our penalty, CP is the minimum
nuclear norm solution, GD:3 is a depth 3 network trained with gradient descent, OPT is OptSpace [38], and SI
is SoftImpute [47]. To reduce clutter, we omit results with similar performance (e.g. GD:4, GD:5 etc.).

* A depth 1 network trained with Adam + penalty can outperform a variety of other methods in both
generalization error and rank reduction/recovery---and also do so with less training data

Results (real-world data)

Uses side info, Uses side info,
add. features, or add. features, or

Model other info, etc? 90% Model other info, etc? 80%
RMSE RMSE

Depth 1 LNN No Depth 1 LNN No

w. GD 2.814 w. GD 2.797

w. GD+penalty 2.808 w. GD+penalty 2.821

w. Adam 1.844 w. Adam 1.822

w. Adam+penalty 0.915 w. Adam+penalty 0.921
User-Item Embedding No User-Item Embedding No

w. GD 2.453 w. GD 2.532

w. GD+penalty 2.535 w. GD+penalty 2.519

w. Adam 1.282 w. Adam 1.348

w. Adam+penalty 0.906 w. Adam+penalty 0.919
NMF [48] No 0.958
PMF [48] No 0.952 IMC [33, 66] Yes 1.653
SVD++ [41] Yes 0.913 GMC [36] Yes 0.996
NFM [30] No 0.910 MC [18] Yes 0.973
FM [55] No 0.909 GRALS [52] Yes 0.945
GraphRec [53] No 0.898 sRGCNN (sRMGCNN) [49] Yes 0.929
AutoSVD++ [59] Yes 0.904 GC-MC [16] Yes 0.910
GraphRec+sidefeat.[53] Yes 0.899 GC-MC+side feat. [16] Yes 0.905
GraphRec+graph/side feat.[53] Yes 0.883

(a) Performance on 90:10 (90%) train-test split (b) Performance on 80:20 (80%) train-test split

* On Movielens100K, a depth 1 linear network trained with Adam + penalty (in bold) can improve performance
considerably over gradient descent alone

e Surprisingly, a depth 1 linear network with Adam + penalty can come close to or even outperform other more
complex methods---without any non-linearities, side information, extra features, deep networks, etc.

Conclusion

* Takeaway: Combining Adam’s own implicit bias with our proposed
penalty can enable more efficient learning

* What's next?
* Extensions/applicability to non-linear networks for other tasks?
e Convergence rates
 How does this fit in with other stylized facts and works?

Thank you!

