Toward Efficient Robust Training against
Union of Lp Threat Models

Gaurang Sriramanan  Maharshi Gor Soheil Feizi

NEURAL INFORMATION

’oi PROCESSING SYSTEMS
ole
s




Adversarial Vulnerability
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Lp Norm Threat Models




L-infinity Adversarial Attack
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L1 Adversarial Attacks
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Challenges in Robust Training

* L-inf robust models are vulnherable to L1 attacks and vice versa

* To achieve robustness against the union of threat models, prior works
either use:
e Large number of attack steps for different adversaries

* Fine-tune existing robust models

* For L1 robustness, even certain multi-step adversarial training methods

susceptible to catastrophic failure
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Steepest Ascent Iin L1 Geometry
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Nuclear Norm Regularization
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Curriculum Scheduling

* In practice, NUuAT on its own is not stable enough for L1 training

* We propose to use a Curriculum Schedule to select the nature of

perturbations during L1 training

* To achieve robustness against the union of threat models, we propose

to use a Decision function to select adversary generation

* Maintains low compute requirement: single-step attack per minibatch



Catastrophic Overfitting in L1 Training
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Stabilized L1 Training with NCAT
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ResNet-18 Results on CIFAR-10

Evaluations on Threat models with constraint sets: £,= 12, £,= 0.5 and £,=8/255

Method Number of Clean Worst-Case Average /; ly o

AT Steps Acc Acc Acc Acc Acc Acc
/1 Training Alone
APGD-/, 10 85.9 22.1 48.8 59.5 649 22.1
INCAT-¢, 1 81.1 37.9 536 559 67.0 38.0]
Training under Union of Threat Models

SAT 13.331 83.9 40.4 54.2 54.0 68.0 40.7
AVG 30 84.6 40.1 53.8 52.1 684 40.8
MAX 30 80.4 44.0 534 48.6 66.0 45.7
MSD 50 81.1 43.9 534 495 659 449
EAT 1077 82.2 42.4 54.6 53.6 67.5 42.7

NCAT 1 80.3 42.6 53.3 469 67.0 46.0
NCAT* 1 s 43.7 534 48.4 65.7 46.1




Stability on Large Networks - WideResNet

Evaluations on Threat models with constraint sets: £,= 12, £,= 0.5 and £,=8/255

Method Number of Clean Worst-Case Average /; /o s

AT Steps Acc Acc Acc Acc Acc Acc
¢1 Training Alone

APGD-/; 10 83.7 30.7 52.5 61.6 65.1 30.7

[NCAT-¢, 1 80.7 39.2 546  56.1 68.6 39.3]
Training under Union of Threat Models

SAT 13.331 80.5 45.7 562 559 66.7 459

AVG 30 82.5 45.1 56.1 55,0 68.0 454

MAX 30 79.9 47.4 54.6 50.2 653 484

MSD 50 80.6 46.9 55.1 517 65.6 48.0

EAT 1071 79.9 46.4 56.3 56.0 66.2 46.6

(NCAT 1 81.5 44.6 548 499 683 463




Results on ImageNet-100

Evaluations on Threat models with constraint sets: €,= 255, £,= 1200/255 and £,=4/255

Method Number of Arch Clean Worst-Case /; /s ! ||PPGD
AT Steps Acc Acc Acc Acc Acc Acc
{oo-AT 10 RN50  81.7 0.8 0.8 3.7 55.7 1.5
PAT 10 RN50 72.6 37.8 412 3777 450 || 29.2
NCAT-¢, 1 RN18 64.9 41.1 48.3 414 42.1 || 26.6
NCAT 1 RN18 63.9 41.5 46.8 419 457 || 29.1

N 4



Summary

 Successfully achieves robustness against L1 adversaries in an

efficient manner
* Extends to robust training against union of threat models
* NCAT requires only a single step attack for multiple threat models

* Generalizes to unseen threat models, even to Perceptual Projected

Gradient Descent (PPGD) attack
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