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Machine Learning Models in Practice

The increasing complexity of
Machine Learning Models and
Training Processes has promoted
training outsourcing and Machine
Learning as a Service (MLaaS).

This creates a paramount
security concern in the model
building supply chain.
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Backdoor Attacks
@?‘?’i‘@

Backdoor Attack
influences the

Training Data model prediction

by modifying the

¥ model’s behavior
$ during the

training process

Training the with a backdoor.

Machine Learning

\ Algorithm )

trigger ‘
.

L. i HN
2o o@]

EE

Input Data Trained Prediction
Model

A

Yellow Square

Prediction: FAST

Prediction: SLOW

Backdoor attacks can lead harmful
consequences when the ML models
are deployed inreal life.



Existing Attacks: Single-trigger and Single-payload
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Existing Attacks: Single-trigger and Single-payload

All-to-One Attacks
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Are these the most powerful backdoor

attacks that the adversary can perform?
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Multi-trigger and Multi-payload Attacks?

All-to-One Attacks
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Multi-trigger and Multi-payload Attacks?

All-to-One Attacks
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Multi-trigger and Multi-payload Attacks?

PatchMT

RefoolMT

Dataset WalNetM 1
Clean Attack Clean Attack Clean Attack
MNIST |0.975/0.014 | 0.298 | 0.977/0.012 | 0.341 | 0.969/0.020 | 0.784
CIFARI10 | 0.933/0.007 | 0.487 |0.934/0.006 | 0.730 | 0.894/0.046 | 0.308
GTSRB |[0.958/0.031| 0.376 | 0.951/0.043 | 0.802 | 0.953/0.041 | 0.012
T-IMNET | 0.577/0.002 | 0.003 | 0.575/0.004 | 0.137 |0.562/0.017 | 0.376

~——

Short Story: Attack Performance Significantly Degrade!
(if we want to preserve clean-data performance)

Cause a much larger model perturbation!



Marksman: Multi-trigger and Multi-payload Attacks
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Marksman: Multi-trigger and Multi-payload Attacks
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Marksman: Multi-trigger and Multi-payload Attacks

Learn to do classification
and poison the classifier
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Effectiveness of Marksman Attacks
High poisoned data percentage (50%)

Table 1: Clean and attack performance with 50% poisoning rate. Red values represent the performance
drop w.r.t the original benign classifier.

Dataset PatchMT RefoolMT WaNetMT Marksman
Clean Attack Clean Attack Clean Attack Clean Attack
MNIST [0.967/0.022 | 0.996 | 0.942/0.047 | 0.893 [0.970/0.019 | 0.909 | 0.988/0.001 | 1.000
CIFAR10 | 0.882/0.058 | 0.990 |0.910/0.030 | 0.984 | 0.920/0.020 | 0.999 |0.941/0.007 | 1.000
GTSRB |[0.943/0.051 | 0.993 | 0.909/0.085 | 0.977 |0.962/0.032 | 0.999 |0.986/0.001 | 0.999
T-IMNET | 0.527/0.052 | 0.951 |0.429/0.150 | 0.843 |0.548/0.031 | 0.999 |0.577/0.002 | 0.999

Others: clean data accuracy drops significantly

Marksman: clean data accuracy trivially drops
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Effectiveness of Marksman Attacks

Low (more practical) poisoned data percentage (10%)

Table 3: Attack success rate for each target class with 10% poisoning rate.

MNIST
PatchMT
ReFoolMT
WaNetMT
Marksman

1

2

3

4

5

6

7

8

9

10

0.373
0.720
0.726
0.997

0.209
0.230
0.853
0.998

0.162
0.954
0.820
1.000

0.267
0.006
0.760
1.000

0.288
0.050
0.721
0.999

0.390
0.131
0.799
1.000

0.149
0.420
0.649
1.000

0.368
0.882
0.874
1.000

0.172
0.031
0.791
0.998

0.621
0.009
0.817
0.998

CIFAR10
PatchMT
ReFoolMT
WaNetMT
Marksman

1

2

3

4

>

6

7

8

9

10

0.397
0.787
0.290
1.000

0.362
0.844
0.330
1.000

0.449
0.707
0.316
1.000

0.744
0.791
0.428
0.999

0.418
0.804
0.324
1.000

0.534
0.725
0.391
1.000

0.725
0.864
0.241
1.000

0.369
0.654
0.398
1.000

0.384
0.569
0.242
0.999

0.399
0.532
0.354
1.000

Others: attack performance drops significantly

Marksman: almost perfect performance on all datasets
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Marksman against Defenses
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Marksman’s Multi-trigger Multi-payload Attacks

5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) MNIST (b) CIFAR10

This work calls for defensive studies to counter Marksman’s more
powerful yet sophisticated multi-trigger and multi-payload attacks.
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HIGHLIGHTS APPROACH ATTACK PERFORMANCE

We discover an extremely sophisticated type of backdoor The trigger function in Marksman is a class-conditional trigger; Marksman achieves almost perfect performance on all datasets with 10% poisoned datal
attacks in deep neural networks (DNNS)' O Table 3: Attack success rate for each target class with 10% poisoning rate.
I p neu W . c o MNIST 1 2 3 4 5 6 7 8 9 | 10
e Inthis attack, the adversary can flexibly attack any target - @g‘ ., Erngy ®c PatchMT [ 0.373 | 0.209 | 0.162 | 0.267 | 0.288 | 0.390 | 0.149 | 0.368 | 0.172 | 0.621
label during inference by establishing a causal link i ReFoolMT | 0.720 | 0.230 | 0.954 | 0.006 | 0.050 | 0.131 | 0.420 | 0.882 | 0.031 | 0.009

WaNetMT | 0.726 | 0.853 | 0.820 | 0.760 | 0.721 | 0.799 | 0.649 | 0.874 | 0.791 | 0.817
Marksman | 0.997 | 0.998 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.998 | 0.998

between the trigger function and all output classes.

T(c, )

e This attack, denoted as Marksman, involves: CIFARI0 | 1 2 3 4 5 6 7 3 9 10
o Aclass-condition generative trigger function can Marksman’s Optimization alternates between backdoor-injection| | PatchMT [0:3970.362 [ 0.449 | 0.744 | 0.418 | 0.534 | 0.725 | 0.369 | 0.384 | 0.399

R R - : : N o ReFoolMT | 0.787 | 0.844 | 0.707 | 0.791 | 0.804 | 0.725 | 0.864 | 0.654 | 0.569 | 0.532

generate an imperceptible trigger pattern to cause the and multi-target multi-payload trigger generator learning: WaNetMT | 0.290 | 0.330 | 0.316 | 0.428 | 0.324 | 0.391 | 0241 | 0.398 | 0.242 | 0.354

Marksman | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000

lOther methods, except Marksman, require higher poisoning rate to attend good ASRs]

Table 1: Clean and attack performance with 50% poisoning rate. Red values represent the performance

model to predict any chosen target label.
o A constrained optimization objective that can
effectively and efficiently learn the trigger function

Learn to do classification
and poison the classifier

and poison the model. . drop w.r.t the original benign classifier.
P e s . min. Z L(fo(z),y) + Z L(fo(Te-(6)(c, ), ¢) Distasek PatchMT RefoolMT WaNetMT Marksman
e Marksman exhibits high attack effectiveness and can (@y)€Se (@)€S, - Cloan ] Atiack | _Clom, | Atiack [ Cloan [ Artack [ Cloan. ] Atfack
isti MNIST |0.967/0.022 | 0.996 | 0.942/0.047 | 0.893 |0.970/0.019 | 0.909 | 0.988/0.001 | 1.000
bypass most existing baclfdoor defense's. Hv CIFAR10 |0.882/0.058 | 0.990 |0.910/0.030 | 0984 |0.920/0.020| 0.999 |0.941/0.007 | 1.000
e Defensive research on this new attack is necessary. s.t. & =argmin Z L(fo(Te(c,x)),¢) — Bllg(c, z)||2 GTSRB | 0.943/0.051 | 0.993 |0.909/0.085 | 0.977 |0.962/0.032 | 0.999 | 0.986/0.001 | 0.999
E\H I ’ T-IMNET | 0.527/0.052 | 0.951 | 0.429/0.150 | 0.843 | 0.548/0.031 | 0.999 | 0.577/0.002 | 0.999

(z,y)€Sp,cy
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Spectral Signature - Latent-space Defense
Existing defenses do not work against Marksman — Requires more defensive research
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