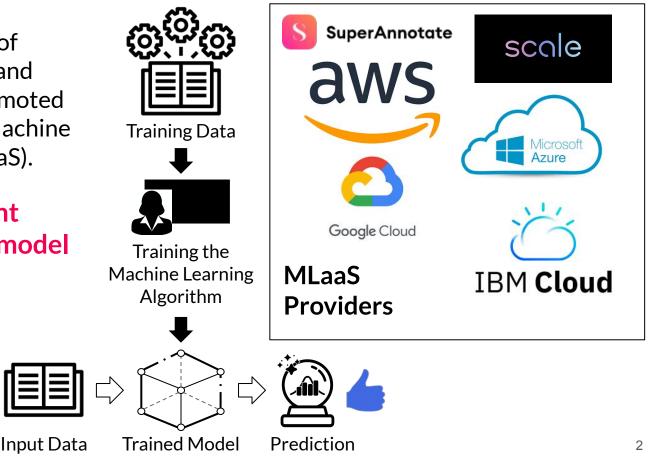
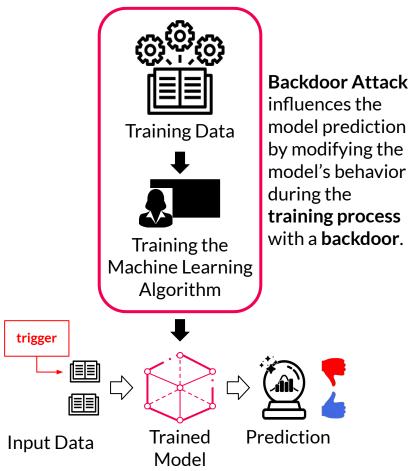


Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class


Khoa D. Doan, Yingjie Lao, Ping Li

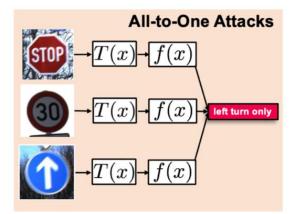
NeurIPS 2022


Machine Learning Models in Practice

The increasing complexity of Machine Learning Models and Training Processes has promoted training outsourcing and Machine Learning as a Service (MLaaS).

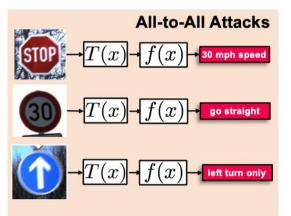
This creates a paramount security concern in the model building supply chain.

Backdoor Attacks

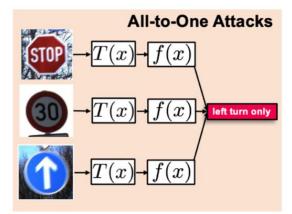


Prediction: **SLOW**

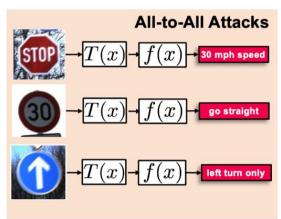
Prediction: FAST


Backdoor attacks can lead harmful consequences when the ML models are deployed in real life.

Existing Attacks: Single-trigger and Single-payload

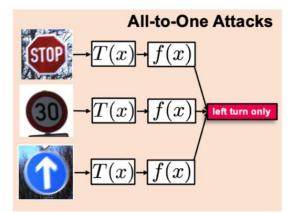

Triggered images

are mapped into one specific target class



Triggered images from different true classes are mapped into different target classes

Existing Attacks: Single-trigger and Single-payload


Triggered images are mapped into one specific target class

Are these the most powerful backdoor attacks that the adversary can perform?

Triggered images from different true classes are mapped into different target classes

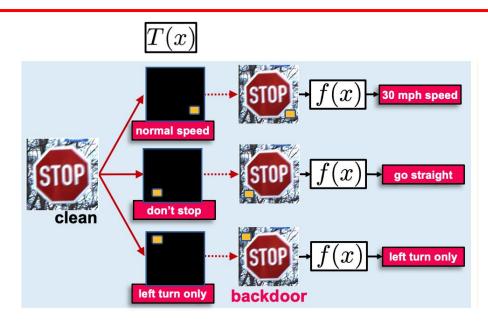
Multi-trigger and Multi-payload Attacks?

All-to-All Attacks

30 mph speed

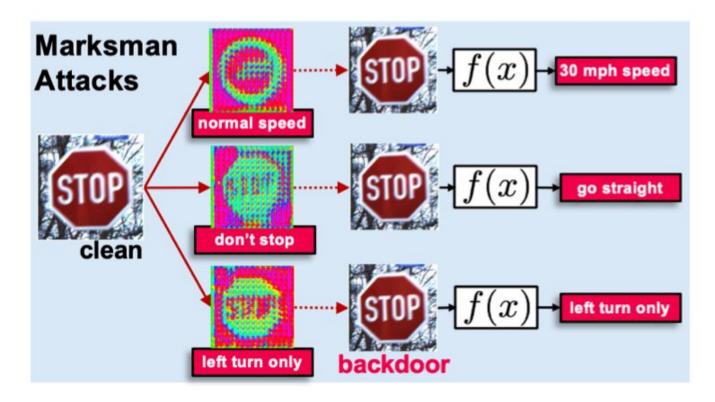


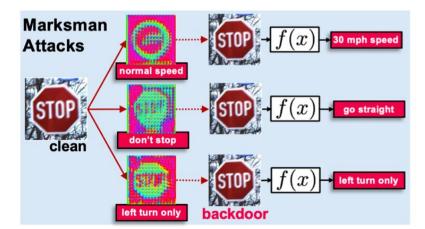
are mapped into one specific target class

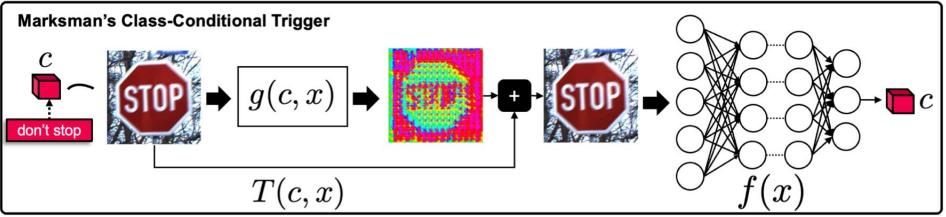

An image with different triggered patterns are mapped into different target classes?

Triggered images from different true classes are mapped into different target classes

Multi-trigger and Multi-payload Attacks?


An Image with different triggered patterns are mapped into different target classes?


Multi-trigger and Multi-payload Attacks?


Dataset	PatchM	IT	Refool	ΛT	WaNetMT					
Dataset	Clean	Attack	Clean	Attack	Clean	Attack				
MNIST	0.975/0.014	0.298	0.977/0.012	0.341	0.969/0.020	0.784				
CIFAR10	0.933/0.007	0.487	0.934/0.006	0.730	0.894/0.046	0.308				
GTSRB	0.958/ <mark>0.031</mark>	0.376	0.951/ <u>0.043</u>	0.802	0.953/ <mark>0.041</mark>	0.012				
T-IMNET	0.577/0.002	0.003	0.575/ <mark>0.004</mark>	0.137	0.562/0.017	0.376				
Short Story: Attack Performance Significantly Degrade! (if we want to preserve clean-data performance)										
Cause a much larger model perturbation!										

Marksman: Multi-trigger and Multi-payload Attacks

Marksman: Multi-trigger and Multi-payload Attacks

Marksman: Multi-trigger and Multi-payload Attacks

$$\begin{split} & \underset{\theta}{\min} \sum_{(x,y) \in \mathcal{S}_c} \mathcal{L}(f_{\theta}(x), y) + \alpha \sum_{\substack{(x,y) \in \mathcal{S}_p \\ c \neq y}} \mathcal{L}(f_{\theta}(T_{\xi^*(\theta)}(c, x)), c) \\ s.t. \quad \xi^* = \arg\min_{\xi} \sum_{\substack{(x,y) \in \mathcal{S}_p, c \neq y}} \mathcal{L}(f_{\theta}(T_{\xi}(c, x)), c) - \beta ||g(c, x)||_2 \\ & \text{Learn to generate the multi-payload triggers}} \end{split} \quad \end{split}$$

Effectiveness of Marksman Attacks

High poisoned data percentage (50%)

Table 1: Clean and attack performance with 50% poisoning rate. Red values represent the performance drop w.r.t the original benign classifier.

Dataset	PatchMT		RefoolMT		WaNetN	ΛT	Marksman		
Dataset	Clean	Attack	Clean	Attack	Clean	Attack	Clean	Attack	
MNIST	0.967/0.022	0.996	0.942/0.047	0.893	0.970/ <mark>0.019</mark>	0.909	0.988/ <mark>0.001</mark>	1.000	
CIFAR10	0.882/0.058	0.990	0.910/0.030	0.984	0.920/0.020	0.999	0.941/0.007	1.000	
GTSRB	0.943/0.051	0.993	0.909/ <mark>0.085</mark>	0.977	0.962/0.032	0.999	0.986/ <mark>0.001</mark>	0.999	
T-IMNET	0.527/ <mark>0.052</mark>	0.951	0.429/ <mark>0.150</mark>	0.843	0.548/ <mark>0.031</mark>	0.999	0.577/ <mark>0.002</mark>	0.999	

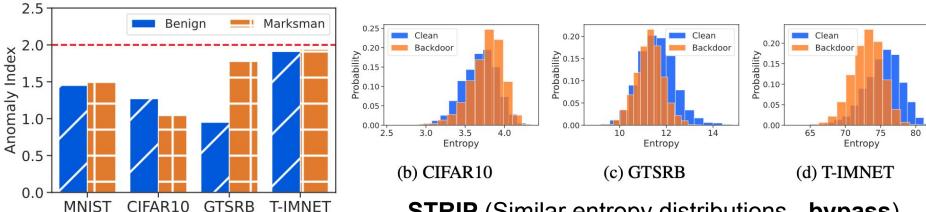
Others: clean data accuracy drops significantly

Marksman: clean data accuracy trivially drops

Effectiveness of Marksman Attacks

Low (more practical) poisoned data percentage (10%)

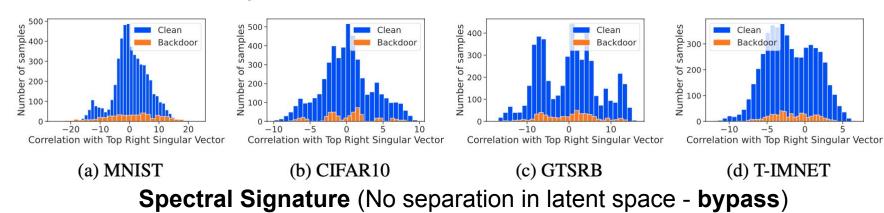
					0			-	<u> </u>	
MNIST	1	2	3	4	5	6	7	8	9	10
PatchMT	0.373	0.209	0.162	0.267	0.288	0.390	0.149	0.368	0.172	0.621
ReFoolMT	0.720	0.230	0.954	0.006	0.050	0.131	0.420	0.882	0.031	0.009
WaNetMT	0.726	0.853	0.820	0.760	0.721	0.799	0.649	0.874	0.791	0.817
Marksman	0.997	0.998	1.000	1.000	0.999	1.000	1.000	1.000	0.998	0.998
CIFAR10	1	2	3	4	5	6	7	8	9	10
PatchMT	0.397	0.362	0.449	0.744	0.418	0.534	0.725	0.369	0.384	0.399
ReFoolMT	0.787	0.844	0.707	0.791	0.804	0.725	0.864	0.654	0.569	0.532
WaNetMT	0.290	0.330	0.316	0.428	0.324	0.391	0.241	0.398	0.242	0.354
Marksman	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	0.999	1.000

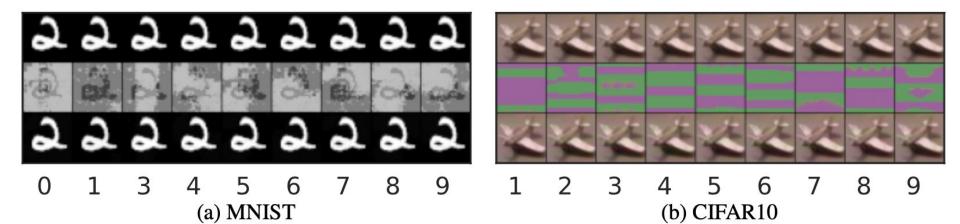

Table 3: Attack success rate for each target class with 10% poisoning rate.

Others: attack performance drops significantly

Marksman: almost perfect performance on all datasets

13


Marksman against Defenses


STRIP (Similar entropy distributions - **bypass**)

14

Neural Cleanse (<2 - bypass)

Marksman's Multi-trigger Multi-payload Attacks

This work calls for defensive studies to counter Marksman's more powerful yet sophisticated multi-trigger and multi-payload attacks.

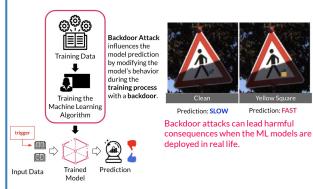
Thank You!

<u>Contact</u> Khoa D. Doan | khoadoan.me | khoadoan106@gmail.com

Marksman: Backdoor Attacks with Arbitrary Target Class

Khoa D. Doan, Yingjie Lao, Ping Li {khoadoan106, laoyingjie, pingli98}@gmail.com

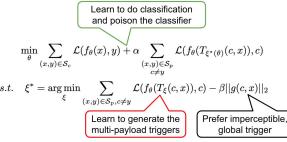
VinUniversity, Vietnam | Clemson University, USA | Linkedin Corporation, USA



HIGHLIGHTS

We discover an extremely sophisticated type of backdoor attacks in deep neural networks (DNNs):

- In this attack, the adversary can flexibly attack any target label during inference by establishing a causal link between the trigger function and all output classes.
- This attack, denoted as Marksman, involves:
 - A class-condition generative trigger function can generate an imperceptible trigger pattern to cause the model to predict any chosen target label.
 - A constrained optimization objective that can effectively and efficiently learn the trigger function and poison the model.
- Marksman exhibits high attack effectiveness and can bypass most existing backdoor defenses.
- Defensive research on this new attack is necessary.


THREAT MODEL

APPROACH

Marksman's Optimization alternates between backdoor-injection and multi-target multi-payload trigger generator learning:

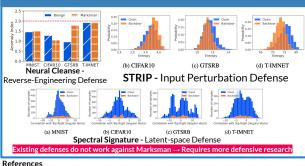
MARKSMAN ATTACKS All-to-All Attacks Attacks T(x) - f(x) - 30 mph speed T(x) - f(x)f(x) go straight T(x) - f(x)T(x) - f(x) - left turn on 22 a 3 8 9 2 8 0 1 Δ 6 6

(b) CIFAR10

(a) MNIST

ATTACK PERFORMANCE

Marksman achieves almost perfect performance on all datasets with 10% poisoned data


Table 3: Attack success rate for each target class with 10% poisoning rate.										
MNIST	1	2	3	4	5	6	7	8	9	10
PatchMT	0.373	0.209	0.162	0.267	0.288	0.390	0.149	0.368	0.172	0.621
ReFoolMT	0.720	0.230	0.954	0.006	0.050	0.131	0.420	0.882	0.031	0.009
WaNetMT	0.726	0.853	0.820	0.760	0.721	0.799	0.649	0.874	0.791	0.817
Marksman	0.997	0.998	1.000	1.000	0.999	1.000	1.000	1.000	0.998	0.998
CIFAR10	1	2	3	4	5	6	7	8	9	10
PatchMT	0.397	0.362	0.449	0.744	0.418	0.534	0.725	0.369	0.384	0.399
ReFoolMT	0.787	0.844	0.707	0.791	0.804	0.725	0.864	0.654	0.569	0.532
WaNetMT	0.290	0.330	0.316	0.428	0.324	0.391	0.241	0.398	0.242	0.354
Marksman	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	0.999	1.000

Other methods, except Marksman, require higher poisoning rate to attend good ASRs

Table 1: Clean and attack performance with 50% poisoning rate. Red values represent the performance drop w.r.t the original benign classifier.

Dataset	PatchMT		RefoolMT		WaNetM	ΛT	Marksman	
	Clean	Attack	Clean	Attack	Clean	Attack	Clean	Attack
MNIST	0.967/0.022	0.996	0.942/0.047	0.893	0.970/0.019	0.909	0.988/0.001	1.000
CIFAR10	0.882/0.058	0.990	0.910/0.030	0.984	0.920/0.020	0.999	0.941/0.007	1.000
GTSRB	0.943/0.051	0.993	0.909/0.085	0.977	0.962/0.032	0.999	0.986/0.001	0.999
T-IMNET	0.527/ <mark>0.052</mark>	0.951	0.429/ <mark>0.150</mark>	0.843	0.548/ <mark>0.031</mark>	0.999	0.577/ <mark>0.002</mark>	0.999

DEFENSE TESTS

Wang2019 Neural cleanse: Identifying & mitigating backdoor attacks in neural nets. IEEE SSP 2019. [Tran2018] Spectral signatures in backdoor attacks. NeurIPS 2018. [Doan2021a] LIRA: learnable, imperceptible and robust backdoor attacks. ICCV2021. [Doan2021b] Backdoor attack with imperceptible input and latent modification. NeurIPS2021.