Communication Efficient Distributed Learning for Kernelized Contextual Bandits

Abstract

We tackle the communication efficiency challenge of learning kernelized contextual bandits in a distributed setting. Despite the recent advances in communication-efficient distributed bandit learning, existing solutions are restricted to simple models like multi-armed bandits and linear bandits, which hamper their practical utility. In this paper, instead of assuming the existence of a linear reward mapping from the features to the expected rewards, we consider non-linear reward mappings, by letting agents collaboratively search in a reproducing kernel Hilbert space (RKHS). This introduces significant challenges in communication efficiency as distributed kernel learning requires the transfer of raw data, leading to a communication cost that grows linearly w.r.t. time horizon T. We address this issue by equipping all agents to communicate via a common Nystrom embedding that gets updated adaptively as more data points are collected. We rigorously proved that our algorithm can attain sub-linear rate in both regret and communication cost.

Distributed Bandit Learning

For each round I = 1, 2, ..., 7

For client i = 1, 2, ..., N

index t := N(l - 1) + i

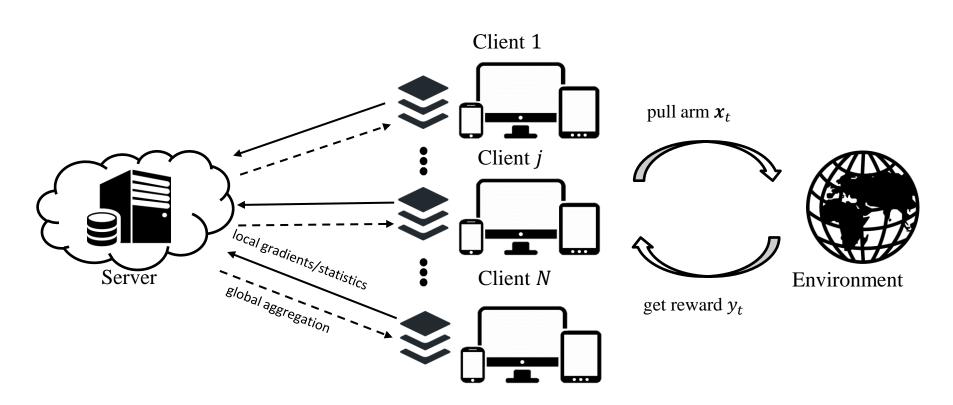
- Client i_t picks arm x_t from set \mathcal{A}_t and observes reward $y_t = f(x_t) + \eta_t$
- Communication between the server and clients

Regret & Communication

- $R_T = \sum_{t=1}^{NT} r_t$, where $r_t = \max_{x \in A_t} f(x) f(x_t)$
- C_T : total number of real numbers transferred in the system

Goal

• Incur sub-linear C_T w.r.t. T, while having near-optimal $R_T = \tilde{O}(\sqrt{NT})$



A network with N clients sequentially taking actions and receiving feedback from the environment, and a server that coordinates the communication among the clients.

Chuanhao Li¹, Huazheng Wang², Mengdi Wang³, and Hongning Wang¹ 1. University of Virginia, 2. Oregon State University, 3. Princeton University

Extension to Kernelized Contextual Bandits

Prior works in linear bandits & challenges in extension to kernelized bandits

Distributed linear bandits

- Joint model estimation $\hat{\theta} = \mathbf{A}^{-1}\mathbf{b}$
- Communicate local updates of $\mathbf{A} = \lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X} \in \mathbb{R}^{d \times d}$, $\mathbf{b} = \mathbf{X}^{\mathsf{T}} \mathbf{y} \in \mathbb{R}^{d}$

	Regret R _T	Communication C_T
[Wang et al., ICLR' 20]	$O(d\sqrt{NT}\log NT)$	$\tilde{O}(d^3N^{1.5})$
[Li and Wang, AISTATS' 22, He et al., NeurIPS' 22]	$O(d\sqrt{NT}\log NT)$	$\tilde{O}(d^3N^2)$

Distributed kernelized contextual bandits:

• Assume f in RKHS: $f(x) = \phi(x)^{T} \theta_{\star}$

 $\phi \colon \mathbb{R}^d \to \mathbb{R}^p$ is a known feature map p is possibly infinite

- $\theta_{\star} \in \mathbb{R}^{p}$ is the unknown parameter
- Search for unknown reward function *f* in RKHS, which is a powerful tool for optimizing black box functions

Challenge: joint kernel estimation is communication expensive

Empirical mean and variance

$$\hat{\mu}_{t,i}(\mathbf{x}) = \mathbf{K}_{\mathcal{D}_{t}(i)}(\mathbf{x})^{\top} \left(\mathbf{K}_{\mathcal{D}_{t}(i),\mathcal{D}_{t}(i)} + \lambda I \right)^{-1} \mathbf{y}_{\mathcal{D}_{t}(i)}$$
$$\hat{\sigma}_{t,i}(\mathbf{x}) = \lambda^{-1/2} \sqrt{k(\mathbf{x}, \mathbf{x}) - \mathbf{K}_{\mathcal{D}_{t}(i)}(\mathbf{x})^{\top} \left(\mathbf{K}_{\mathcal{D}_{t}(i),\mathcal{D}_{t}(i)} + \lambda I \right)^{-1} \mathbf{K}_{\mathcal{D}_{t}(i)}(\mathbf{x})}$$
where

W

$$\mathbf{K}_{\mathcal{D}_{t}(i)}(\mathbf{x}) = \mathbf{\Phi}_{\mathcal{D}_{t}(i)}\phi(\mathbf{x}) = [k(\mathbf{x}_{s}, \mathbf{x})]_{s \in \mathcal{D}_{t}(i)}^{\top} \in \mathbb{R}^{[\mathcal{D}_{t}(i)]} \qquad \text{grows linearly wr.t. } T$$

$$\mathbf{K}_{\mathcal{D}_{t}(i), \mathcal{D}_{t}(i)} = \mathbf{\Phi}_{\mathcal{D}_{t}(i)}^{\top} \mathbf{\Phi}_{\mathcal{D}_{t}(i)} = [k(\mathbf{x}_{s}, \mathbf{x}_{s'})]_{s, s' \in \mathcal{D}_{t}(i)} \in \mathbb{R}^{|\mathcal{D}_{t}(i)| \times |\mathcal{D}_{t}(i)|}$$

Proposed Solution

Nystrom Approximation Approximated mean and variance $\tilde{\mu}_{t,i}(\mathbf{x}) = z(\mathbf{x}; \mathcal{S})^{\top} \left(\mathbf{Z}_{\mathcal{D}_t(i); \mathcal{S}}^{\top} \mathbf{Z}_{\mathcal{D}_t(i); \mathcal{S}} + \lambda \mathbf{I} \right)^{-1} \mathbf{Z}_{\mathcal{D}_t(i); \mathcal{S}}^{\top} \mathbf{y}_{\mathcal{D}_t(i)}$

 $\tilde{\sigma}_{t,i}(\mathbf{x}) = \lambda^{-1/2} \sqrt{k(\mathbf{x}, \mathbf{x}) - z(\mathbf{x}; \mathcal{S})^{\top} \mathbf{Z}_{\mathcal{D}_{t}(i); \mathcal{S}}^{\top} \mathbf{Z}_{\mathcal{D}_{t}(i); \mathcal{S}}^{\top} [\mathbf{Z}_{\mathcal{D}_{t}(i); \mathcal{S}}^{\top} \mathbf{Z}_{\mathcal{D}_{t}(i); \mathcal{S}}^{\top} \mathbf{Z}_{\mathcal$

where

 $\mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}} \in \mathbb{R}^{|\mathcal{D}_t(i)| \times |\mathcal{S}|}$ is obtained by applying embedding function $z(\cdot)$ to $\Phi_{\mathcal{D}_t(i)}$ embedding function $z(\cdot)$ is shared by all N clients

Event-triggered communication

 $\sum \quad \tilde{\sigma}_{t_{\text{last}},i}^2(\mathbf{x}_s) > D \text{ for any client } i$ $s \in \mathcal{D}_t(i) \setminus \mathcal{D}_{t_{\text{last}}}(i)$

update the shared embedding function $z(\cdot)$ synchronize embedded statistics of all clients size $O(\gamma_{NT}^2)$, much more efficient to communicate

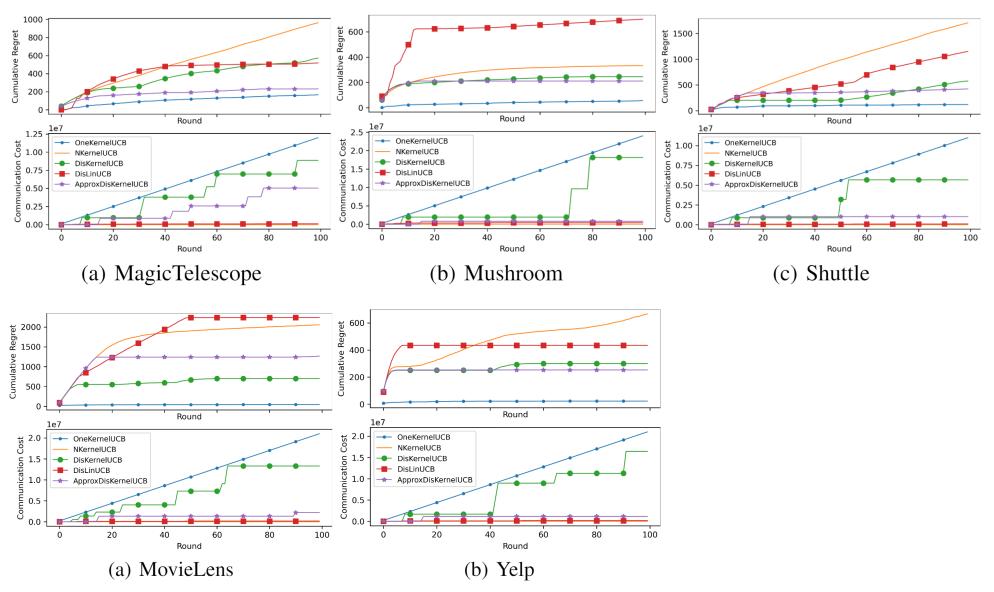
Algo	Algorithm 2 Approximated Distributed Kernel UCB (Approx-DisKernelUCB)		
1:]	Input: threshold $D > 0$, regularization parameter $\lambda > 0$, $\delta \in (0, 1)$ and kernel function $k(\cdot, \cdot)$.		
2:]	Initialize $\tilde{\mu}_{0,i}(\mathbf{x}) = 0$, $\tilde{\sigma}_{0,i}(\mathbf{x}) = \sqrt{k(\mathbf{x}, \mathbf{x})}$, $\mathcal{N}_0(i) = \mathcal{D}_0(i) = \emptyset$, $\forall i \in [N]$; $\mathcal{S}_0 = \emptyset$, $t_{\text{last}} = 0$		
3: 1	for round $l = 1, 2,, T$ do		
4:	for client $i = 1, 2,, N$ do		
5:	[Client i] selects arm $\mathbf{x}_t \in \mathcal{A}_t$ according to Eq (3) and observes reward y_t , where $t :=$		
	N(l-1)+i		
6:	[Client i] updates $\mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_{t_{\text{last}}}}^{\top} \mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_{t_{\text{last}}}}$ and $\mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_{t_{\text{last}}}}^{\top} \mathbf{y}_{\mathcal{D}_t(i)}$ using $(\mathbf{z}(\mathbf{x}_t;\mathcal{S}_{t_{\text{last}}}), y_t)$; sets		
	$\mathcal{N}_t(i) = \mathcal{N}_{t-1}(i) \cup \{t\}, \text{ and } \mathcal{D}_t(i) = \mathcal{D}_{t-1}(i) \cup \{t\}$		
	// Global Synchronization		
7:	if the event $\mathcal{U}_t(D)$ defined in Eq (4) is true then		
8:	[Clients $\forall i$] sample $S_{t,i} = \text{RLS}(\mathcal{N}_t(i), \bar{q}, \tilde{\sigma}^2_{t_{\text{last}},i})$, and send $\{(\mathbf{x}_s, y_s)\}_{s \in S_{t,i}}$ to server		
9:	[Server] aggregates and sends $\{(\mathbf{x}_s, y_s)\}_{s \in S_t}$ back to all clients, where $S_t = \bigcup_{i \in [N]} S_{t,i}$		
10:	[Clients $\forall i$] compute and send { $\mathbf{Z}_{\mathcal{N}_t(i);\mathcal{S}_t}^{\top} \mathbf{Z}_{\mathcal{N}_t(i);\mathcal{S}_t}, \mathbf{Z}_{\mathcal{N}_t(i);\mathcal{S}_t}^{\top} \mathbf{y}_{\mathcal{N}_t(i)}$ } to server		
11:	[Server] aggregates $\sum_{i=1}^{N} \mathbf{Z}_{\mathcal{N}_{t}(i);\mathcal{S}_{t}}^{\top} \mathbf{Z}_{\mathcal{N}_{t}(i);\mathcal{S}_{t}}, \sum_{i=1}^{N} \mathbf{Z}_{\mathcal{N}_{t}(i);\mathcal{S}_{t}}^{\top} \mathbf{y}_{\mathcal{N}_{t}(i)}$ and sends it back		
12:	[Clients $\forall i$] updates $\mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_t}^{\top} \mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_t}$ and $\mathbf{Z}_{\mathcal{D}_t(i);\mathcal{S}_t}^{\top} \mathbf{y}_{\mathcal{D}_t(i)}$; sets $\mathcal{D}_t(i) = \bigcup_{i=1}^N \mathcal{N}_t(i) = \bigcup_{i=1}^N \mathcal{N}_t(i)$		
	$[t]$ and $t_{\text{last}} = t$		

Theoretical Results

To attain near-optimal regret $R_T = O(\sqrt{NT}(\|\theta_{\star}\|\sqrt{\gamma_{NT}} + \gamma_{NT}))$, our proposed solution requires $C_T = O(\gamma_{NT}^3 N^2)$ communication, where

- γ_{NT} is the maximum information gain, $\gamma_{NT} = d \log NT$ for linear kernel, $\gamma_{NT} = \log^{d+1} NT$ for Gaussian kernel
- under linear setting, it matches C_T of dedicated distributed linear bandit algorithms [Li and Wang, AISTATS' 22, He et al., NeurIPS' 22] up to $O(\log^2 NT)$

Experiment Results



References

Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. (2019). "Distributed bandit learning: Near-optimal regret with efficient communication." In: International Conference on Learning Representations,

Chuanhao Li and Hongning Wang (2022). "Asynchronous upper confidence bound algorithms for federated linear bandits.". In: International Conference on Artificial Intelligence and Statistics.

Jiafan He, Tianhao Wang, Yifei Min, Quanquan Gu (2022). "A Simple and Provably Efficient Algorithm for Asynchronous Federated Contextual Linear Bandits". In: Advances in Neural Information Processing Systems 36