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Abstract

We tackle the communication efficiency challenge of learning kernelized 

contextual bandits in a distributed setting. Despite the recent advances in 

communication-efficient distributed bandit learning, existing solutions are 

restricted to simple models like multi-armed bandits and linear bandits, which 

hamper their practical utility. In this paper, instead of assuming the existence 

of a linear reward mapping from the features to the expected rewards, we 

consider non-linear reward mappings, by letting agents collaboratively search 

in a reproducing kernel Hilbert space (RKHS). This introduces significant 

challenges in communication efficiency as distributed kernel learning requires 

the transfer of raw data, leading to a communication cost that grows linearly 

w.r.t. time horizon T. We address this issue by equipping all agents to 

communicate via a common Nystrom embedding that gets updated adaptively 

as more data points are collected. We rigorously proved that our algorithm 

can attain sub-linear rate in both regret and communication cost.

Distributed linear bandits

• Joint model estimation ෡𝜽 = 𝐀−1𝐛

• Communicate local updates of 𝐀 = 𝜆𝐈 + 𝐗⊤𝐗 ∈ ℝ𝑑×𝑑, 𝐛 = 𝐗⊤𝐲 ∈ ℝ𝑑

Extension to Kernelized Contextual Bandits

Prior works in linear bandits & challenges in extension to kernelized bandits

Distributed Bandit Learning

For each round l= 1,2,… , 𝑇
For client 𝑖 = 1,2,… , 𝑁
• Client 𝑖𝑡 picks arm 𝑥𝑡 from set 𝒜𝑡 and observes reward 

𝑦𝑡 = 𝑓 𝑥𝑡 + 𝜂𝑡
• Communication between the server and clients

Regret & Communication

• 𝑅𝑇 = σ𝑡=1
N𝑇 r𝑡, where 𝑟𝑡 = max

𝑥∈𝒜𝑡

𝑓 𝑥 − 𝑓 𝑥𝑡

• 𝐶𝑇: total number of real numbers transferred in the system

Goal

• Incur sub-linear 𝐶𝑇 w.r.t. 𝑇, while having near-optimal 𝑅𝑇 = ෨𝑂( 𝑁𝑇)

Theoretical Results

To attain near-optimal regret R𝑇 = 𝑂( 𝑁𝑇( 𝜃⋆ 𝛾𝑁𝑇 + 𝛾𝑁𝑇)), our proposed 

solution requires 𝐶𝑇 = 𝑂(𝛾𝑁𝑇
3 𝑁2) communication, where

• 𝛾𝑁𝑇 is the maximum information gain, 𝛾𝑁𝑇 = 𝑑 log𝑁𝑇 for linear kernel, 

𝛾𝑁𝑇 = log𝑑+1𝑁𝑇 for Gaussian kernel

• under linear setting, it matches 𝐶𝑇 of dedicated distributed linear bandit 

algorithms [Li and Wang, AISTATS’ 22, He et al., NeurIPS’ 22] up to 

𝑂(log2𝑁𝑇)

A network with N clients sequentially taking actions and receiving feedback from the environment, and a server that 

coordinates the communication among the clients.
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Regret 𝑅𝑇 Communication 𝐶𝑇

[Wang et al., ICLR’ 20] 𝑂(𝑑 𝑁𝑇 log𝑁𝑇) ෨𝑂(𝑑3𝑁1.5)

[Li and Wang, AISTATS’ 22, 

He et al., NeurIPS’ 22]
𝑂(𝑑 𝑁𝑇 log𝑁𝑇) ෨𝑂(𝑑3𝑁2)

Distributed kernelized contextual bandits: 

• Assume 𝑓 in RKHS: 𝑓 𝑥 = 𝜙 𝑥 ⊤𝜃⋆

𝜙:ℝ𝑑 → ℝ𝑝 is a known feature map

𝜃⋆ ∈ ℝ𝑝 is the unknown parameter

• Search for unknown reward function 𝑓 in RKHS, which is a powerful tool 

for optimizing black box functions

Challenge: joint kernel estimation is communication expensive

• Empirical mean and variance

where

Proposed Solution

Nystrom Approximation

• Approximated mean and variance

where

is obtained by applying embedding function 𝑧 ⋅ to              

embedding function 𝑧 ⋅ is shared by all 𝑁 clients

Event-triggered communication

• if                                 for any client 𝑖

update the shared embedding function 𝑧(⋅)
synchronize embedded statistics of all clients

EnvironmentServer

Client 1

Client 𝑗

Client 𝑁

pull arm 𝒙𝑡

get reward 𝑦𝑡

grows linearly wr.t. 𝑇

𝑝 is possibly infinite

index 𝑡: = 𝑁 𝑙 − 1 + 𝑖

size 𝑂(𝛾𝑁𝑇
2 ), much more 

efficient to communicate

Experiment Results


