Can Adversarial Training Be Manipulated By Non-Robust Features?

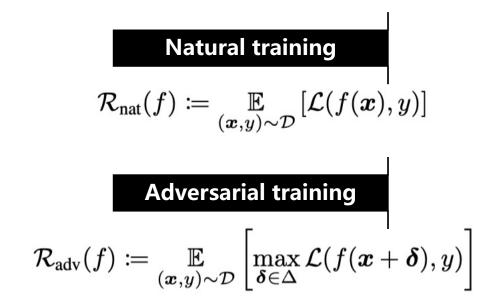
Lue Tao¹, Lei Feng^{2,3}, Hongxin Wei⁴ Jinfeng Yi⁵, Sheng-Jun Huang⁶, Songcan Chen⁶

¹Nanjing University, China
²Chongqing University, Chongqing, China
³RIKEN Center for Advanced Intelligence Project, Japan
⁴Nanyang Technological University, Singapore
⁵JD AI Research, China
⁶Nanjing University of Aeronautics and Astronautics, China

NeurIPS 2022

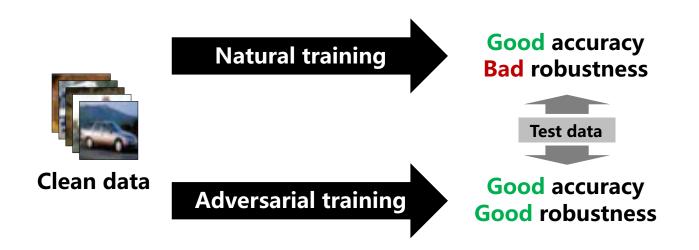
Adversarial Training

- Adversarial training
 - Improving test robustness by minimizing the adversarial risk



Adversarial Training

- □ Adversarial training
 - Improving test robustness by minimizing the adversarial risk



Adversarial Training

- □ Adversarial training
 - originally proposed for improving test robustness
 - ➤ is capable of mitigating training-time availability attacks

Our Contribution

□ We introduce a novel threat model called **stability attack**

- ➤ aims to degrade the test robustness of adversarially trained models
- ➤ in short, aims to hinder robust availability

Perturbed data

- □ We introduce a novel threat model called **stability attack**
 - > aims to degrade the test robustness of adversarially trained models
 - ➤ in short, aims to hinder robust availability
- We provide the first theoretical analysis on the robustness of adversarial training against stability attacks
- □ Comprehensive experiments demonstrate the effectiveness of stability attacks and the necessity of adaptive defense

- **D** Our binary classification task
 - ▶ Gaussian mixture distribution \mathcal{D} (0 < $\eta \ll 1$)
 - $y \stackrel{u.a.r}{\sim} \{-1, +1\}, \quad x_1 \sim \mathcal{N}(y, \sigma^2), \quad x_2, \dots, x_{d+1} \stackrel{i.i.d}{\sim} \mathcal{N}(\eta y, \sigma^2)$ Robust feature Non-robust features
 - Natural and robust classifiers

$$f_{\text{nat}}(\boldsymbol{x}) \coloneqq \operatorname{sign}(\boldsymbol{w}_{\text{nat}}^{\top} \boldsymbol{x}), \text{ where } \boldsymbol{w}_{\text{nat}} \coloneqq [1, \eta, \dots, \eta]$$

 $f_{\text{rob}}(\boldsymbol{x}) \coloneqq \operatorname{sign}(\boldsymbol{w}_{\text{rob}}^{\top} \boldsymbol{x}), \text{ where } \boldsymbol{w}_{\text{rob}} \coloneqq [1, 0, \dots, 0]$

- **D** Two representative perturbations
 - Adversarial perturbation
 - shift each feature towards -y , resulting in \mathcal{T}_{adv}

 $y \overset{u.a.r}{\sim} \{-1,+1\}, \quad x_1 \sim \mathcal{N}((1-\epsilon)y,\sigma^2), \quad x_2,\ldots,x_{d+1} \overset{i.i.d}{\sim} \mathcal{N}((\eta-\epsilon)y,\sigma^2)$

> Hypocritical perturbation

• shift each feature towards y , resulting in \mathcal{T}_{hyp}

 $y \overset{u.a.r}{\sim} \{-1,+1\}, \quad x_1 \sim \mathcal{N}((1+\epsilon)y,\sigma^2), \quad x_2,\ldots,x_{d+1} \overset{i.i.d}{\sim} \mathcal{N}((\eta+\epsilon)y,\sigma^2)$

- **D** Two representative perturbations
 - Adversarial perturbation
 - shift each feature towards -y , resulting in \mathcal{T}_{adv}

 $y \overset{u.a.r}{\sim} \{-1,+1\}, \quad x_1 \sim \mathcal{N}((1-\epsilon)y,\sigma^2), \quad x_2,\ldots,x_{d+1} \overset{i.i.d}{\sim} \mathcal{N}((\eta-\epsilon)y,\sigma^2)$

Theorem 1 (Adversarial perturbation is harmless). Assume that the adversarial perturbation in the training data \mathcal{T}_{adv} (10) is moderate such that $\eta/2 \leq \epsilon < 1/2$. Then, the optimal linear ℓ_{∞} -robust classifier obtained by minimizing the adversarial risk on \mathcal{T}_{adv} with a defense budget ϵ is equivalent to the robust classifier (9).

- **D** Two representative perturbations
 - Hypocritical perturbation
 - shift each feature towards y , resulting in \mathcal{T}_{hyp}

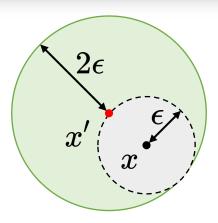
 $y \overset{u.a.r}{\sim} \{-1,+1\}, \quad x_1 \sim \mathcal{N}((1+\epsilon)y,\sigma^2), \quad x_2,\ldots,x_{d+1} \overset{i.i.d}{\sim} \mathcal{N}((\eta+\epsilon)y,\sigma^2)$

Theorem 2 (Hypocritical perturbation is harmful). The optimal linear ℓ_{∞} -robust classifier obtained by minimizing the adversarial risk on the perturbed data \mathcal{T}_{hyp} (11) with a defense budget ϵ is equivalent to the natural classifier (8).

□ Adaptive defense

> A defense budget of 2ϵ is capable of resisting any stability attack

Theorem 4 (General case). For any data distribution and any adversary with an attack budget ϵ , training models to minimize the adversarial risk with a defense budget 2ϵ on the perturbed data is sufficient to ensure ϵ -robustness.



□ Adaptive defense

> A defense budget of 2ϵ is capable of resisting any stability attack

Theorem 4 (General case). For any data distribution and any adversary with an attack budget ϵ , training models to minimize the adversarial risk with a defense budget 2ϵ on the perturbed data is sufficient to ensure ϵ -robustness.

> The budget can be reduced to $\epsilon + \eta$ in the Gaussian mixture setting

Theorem 3 ($\epsilon + \eta$ is necessary). The optimal linear ℓ_{∞} -robust classifier obtained by minimizing the adversarial risk on the perturbed data \mathcal{T}_{hyp} (11) with a defense budget $\epsilon + \eta$ is equivalent to the robust classifier (9). Moreover, any defense budget lower than $\epsilon + \eta$ will yield classifiers that still rely on all the non-robust features.

□ Stability attacks are harmful to conventional adversarial training

Table 2: Test robustness (%) of PGD-AT using a defense budget $\epsilon_d = 8/255$ on CIFAR-10.

Attack	Natural	FGSM	PGD-20	PGD-100	CW_∞	AutoAttack
None (clean)	82.17	56.63	50.63	50.35	49.37	46.99
DeepConfuse [16]	81.25	54.14	48.25	48.02	47.34	44.79
Unlearnable Examples [28]	83.67	57.51	50.74	50.31	49.81	47.25
NTGA [81]	82.99	55.71	49.17	48.82	47.96	45.36
Adversarial Poisoning [18]	77.35	53.93	49.95	49.76	48.35	46.13
Hypocritical Perturbation (ours)	88.07	47.93	37.61	36.96	38.58	35.44

□ Enlarging the defense budget is essential for hypocritical perturbations

Defense	Natural	FGSM	PGD-20	PGD-100	CW_∞	AutoAttack
PGD-AT ($\epsilon_d = 8/255$)	88.07	47.93	37.61	36.96	38.58	35.44
+ Random Noise	87.62	47.46	38.35	37.90	39.07	36.25
+ Gaussian Smoothing	83.95	50.96	42.80	42.34	42.41	40.07
+ Cutout	88.26	49.23	39.77	39.25	40.38	37.61
+ AutoAugment	86.24	48.87	40.19	39.65	37.66	35.07
PGD-AT ($\epsilon_d = 14/255$)	80.00	56.86	52.92	52.83	50.36	48.63
TRADES ($\epsilon_d = 12/255$)	79.63	55.73	51.77	51.63	48.68	47.83
MART ($\epsilon_d = 14/255$)	77.29	57.10	53.82	53.71	49.03	47.67

Table 5: Test robustness (%) of various adaptive defenses on the hypocritically perturbed CIFAR-10.

- Both theoretical and empirical evidences show that the conventional defense budget ε is insufficient under the threat of ε-bounded training-time perturbations.
- Our findings suggest that practitioners should consider a larger defense budget of no more than 2ε (practically, about 1.5ε ~ 1.75ε) to achieve a better ε-robustness.

