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Adversarial Training
p Adversarial training

Ø originally proposed for improving test robustness
Ø is capable of mitigating training-time availability attacks
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Our Contribution
p We introduce a novel threat model called stability attack

Ø aims to degrade the test robustness of adversarially trained models
Ø in short, aims to hinder robust availability
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Our Contribution
p We introduce a novel threat model called stability attack

Ø aims to degrade the test robustness of adversarially trained models
Ø in short, aims to hinder robust availability

p We provide the first theoretical analysis on the robustness of 
adversarial training against stability attacks

p Comprehensive experiments demonstrate the effectiveness of stability 
attacks and the necessity of adaptive defense



Theoretical Analysis
p Our binary classification task

Ø Gaussian mixture distribution     (                 )

p Natural and robust classifiers
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Theoretical Analysis
p Two representative perturbations
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• shift each feature towards −y , resulting in
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Theoretical Analysis
p Adaptive defense

Ø A defense budget of 2ϵ is capable of resisting any stability attack



Theoretical Analysis
p Adaptive defense

Ø A defense budget of 2ϵ is capable of resisting any stability attack

Ø The budget can be reduced to ϵ + η in the Gaussian mixture setting



Empirical Evidence
p Stability attacks are harmful to conventional adversarial training



Empirical Evidence
p Enlarging the defense budget is essential for hypocritical perturbations



Summary
p Both theoretical and empirical evidences show that the 

conventional defense budget ϵ is insufficient under the threat of       
ϵ-bounded training-time perturbations. 

p Our findings suggest that practitioners should consider a larger 
defense budget of no more than 2ϵ (practically, about 1.5ϵ ∼ 1.75ϵ) 
to achieve a better ϵ-robustness.

Thanks！


