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Personalized PageRank (PPR)
● Personalized PageRank (PPR): a standard tool in graph learning

○ In essence, PPR measures the similarity of two nodes, 
based on the network structure

● PPR of a source node u:
○ Random walk starting from u
○ Each step: 

■ probability α returning back to u 
■ probability 1-α proceeding to a random neighbor

○ PPR vector: stationary distribution of random walk
■ PPR value of v: probability staying in v
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Applications in standard graph mining tasks:

● Link prediction; Recommender systems, Collaborative filtering 
● Spam & Abuse detection; Anonymily detection
● Clustering

Recent ML applications:

● Graph embeddings (InstantEmbedding)
● Efficiently running Graph-based Neural Network

Applications



Differentially Private PPR
● Extensive literature in approximating PPR in non-private settings

● No prior work on computing PPR in a differentially private (DP) way

● Edge-ε-DP: changing one edge in the graph has limited effect on 
the output distribution of the algorithm A

○ G and G’ only differ in one edge
○ ∀ possible output set O, Pr[A(G)∈O] ≤ exp(ε) · Pr[A(G’)∈O]

● This ensures that an attacker observing approximate PPR output will 
not learn about the existence of any specific edge in the graph
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Theoretical Results

● First algorithms studying PPR under DP
○ The algorithms are always (joint) edge-ε-DP without any assumption of input graph

● Edge-ε-DP PPR algorithm
○ The output PPR has good approximation when the graph has uniformly large degree

■ The additive error is O(1/D) where D is the minimum degree of the graph

● Joint edge-ε-DP PPR algorithm
○ Joint edge-ε-DP: the different edge between neighboring graph cannot incident to source u

■ The private neighboring information of u is allowed to used to compute PPR of u
○ The additive error is O(1/D2)



● We build upon the well-known Push-Flow algorithm for PPR to prove a 
edge-sensitivity bounded algorithm

○ Set a threshold that the total flow can be pushed along each edge
○ Laplace mechanism to get DP guarantees

● We show that the dependency on the minimum degree is necessary
○ Ω(1/D) is necessary for edge-ε-DP
○ Ω(1/D2) is necessary for joint edge-ε-DP

● This implies DP algorithms for downstream tasks using PPR: graph 
learning, embeddings etc
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Experimental results 
Example result for PPR ranking precision. Notice that the Joint DP algorithm has non-trivial recall 
even for small-ish epsilon values.

Example result for node classification task. 


