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Do Multi-Task Learning always benefits Generalization”?

e Multi-Task Representation Learning aims at training a neural network encoders that
could get representations that are informative to handle multiple tasks simultaneously.
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Do Multi-Task Learning always benefits Generalization?

e Many empirical results [1,2] show that there exist negative transfer when we train
two tasks together, even if the two tasks are semantically correlated.

Relative Performance On
SemSeg Depth  Normals Keypoints Edges | Average

< SemSeg - 300% -279%  -520% 27.80% | 5.70%
= Depth 1.72% - 1.18%  -352% 2573% | 6.28%
2 Normals = 10.81% 7.12% - 88.98% 71.59% | 44.62%
-§ Keypoints  3.12%  -0.41% | -1 - 61.07% | 13.42%
& Edges 0.03%  -1.40% : -3.05% -2.30%

392%  2.08%  -413%  1930% 46.54% | 13.54%

e Even with an over-parameterized model that achieves low training error, the final
MTL generalization could be even worse than single-task learning.

[1] Which Tasks Should Be Learned Together in Multi-task Learning?”, Standley et al. ICML 2020.
[2] A Survey on Negative Transfer, Zhang et al. Trans Neural Netw Learn Syst.



https://arxiv.org/abs/1905.07553

Spurious Correlation Hurts Generalization
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e Spurious Features are those non-causal to the target task, but often exists in
the training dataset, mostly due to data selection bias.

More examples and discussions about spurious feature could be found in: Geirhos et al. Shortcut Learning in Deep Neural Networks



https://arxiv.org/abs/2004.07780

Spurious Correlation Hurts Generalization

{=
0

GO gle cow in beach O]

- If a cow goes to the beach, is it still a cow?

| - - .- H £ -

Pl T o > o
"‘*""’7-,%" X * = ;/_“"-\"—[

|
-

CSESICE S Bl
Ah, To Be a Gorgeous Fren... Cow on the beach (@CowOn... Cows on the Beach | Mental Floss Cows soaking up the sun on one of ...
thecut.com twitter.com mentalfloss.com casateulada.com

e Model is prone to use these feature to fit training data, which hurts generalization [1, 2].

e Two types of spurious feature:
o independent to task-label (noise);
o spuriously correlate to label in training set, and the correlation may change in other dataset.

[1] Understanding the Failure Modes of Out-of-Distribution Generalization. Nagarajan et al. ICLR 2021
[2] Removing Spurious Features can Hurt Accuracy and Affect Groups Disproportionately. Khani et al. FAccT 2021.



Existing Techniques to avoid using spurious features

e Adversarial Removal of Spurious Feature in Raw Data Input

[1] Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image
Representations. Wang et al. ICCV 2019.

Figure from “The Risks of Invariant e Learning Domain-Invariant Representation given multiple Domain
Risk Minimization” Elan et al.
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[2] Bridging Theory and Algorithm for Domain Adaptation. Zhang et al. ICML 2019.



Challenges of Spurious correlation in Multi-Task Learning
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lllustrative Diagram of Causal Generative Model in MTL setting

e the shared MTL model needs to encode all knowledge from
different tasks, and causal knowledge for one task could be
potentially spurious to the other.



Spurious Correlation in Single-Task Learning
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Spurious Correlation in Multi-Task Learning

Spurious correlation in Multi-Task
Learning could be caused by
label-label confounders.

Factors for all tasks need to be
encoded in share representation,
and potentially spurious
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Challenges of Spurious correlation in Multi-Task Learning
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Proposition 1 Given m¢ # 0.5, the Bayes Optimal per-task classifier has non-zero weights to
non-causal factor. Given m¢c = 0.5 and limited training dataset, the trained per-task classifier will
assign non-zero weights to non-causal factor as noise.




Empirical Analysis to study spurious correlation in MTL

e we use the gradient map to quantify how each task use the feature and spurious ratio
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Empirical Analysis to study spurious correlation in MTL

e we use the gradient map to quantify how each task use the feature and spurious ratio
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Grad(F) = Z(J;(IF).;(/)ED oF ) ’ Pspur = ZI;F Grad(F)

e By conducting analysis on Multi-MNIST dataset with spurious correlation in training set,
we found MTL indeed utilize more spurious feature and influence performance.

Multi-SEM | Multi-MNIST
STL MTL | STL MTL

AcCirain | 0.931 0.936 | 0.981 0.987
Acc,,; | 0.906 0.882 | 0.874 0.846
0.128 0.246 | 0.261 0.328
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Figure 3: The gradient saliency map of right- Table 1: Empirical results of multi-task (MTL)
side digit classifier. The model trained by MTL and single-task learning (STL) model on synthetic

exploits left pixels (spurious) more. datasets with changing C;}f;;L



Our solution: Multi-Task Causal Representation Learning
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e Motivated by the ground-truth causal generative process, we aim to use a
neural model to learn the different data factors and causal relationship
between tasks and these factors.



Our solution: Multi-Task Causal Representation Learning

Overall Workflow of MT-CRL:
e Aims to represent multi-task knowledge via disentangled neural modules
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Our solution: Multi-Task Causal Representation Learning

Overall Workflow of MT-CRL:
e Aims to represent multi-task knowledge via disentangled neural modules
e Learn robust task-to-module routing graph weights via MTL-specific
invariant regularization (force graph weights optimal across environments)
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Experiment Results of MT-CRL

Methods | Multi-MNIST MovieLens Taskonomy CityScape NYUv2 Avg.
Vanilla MTL (—baseline to calculate relative improvement—)

Single-Task Learning +3.3% +0.2% -2.5% -2.4% -122%  -2.7%
MTL + PCGrad +4.5% +0.2% +3.1% +2.1% +74%  +3.5%
MTL + GradVac +4.6% +0.3% +3.5% +2.1% +72%  +3.5%
MTL + DANN +4.1% +0.4% +1.2% +0.3% -04%  +1.1%
MTL + IRM +5.0% +0.4% +1.1% +0.6% -0.1%  +1.4%
MT-CRL w/o Lg-1rMm +5.9% +0.2% +3.2% +1.5% +4.3%  +3.0%
MT-CRL with LY, +7.8% +1.0% +6.5% +2.9% +8.0%  +5.2%
MT-CRL with L&Y 50, +8.1% +1.1% +7.1% +2.8% +82%  +5.5%
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MT-CRL can alleviate spurious correlation

(Valid - Tramn) Causal Grad
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View 2: Rocky, october, casino, muppet, payback
View 3: forrest, gump, carrie, now, saving

View 4: i, house, monty, at, life, dark

View 5: good, club, young, stripes, die

View 6: 1978, out, witness, shining, chocolate
View 7: space, la, love, best, graduate

View 8: die, life, black, true, amistad
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MT-CRL can alleviate spurious correlation

action
adventure
animation
children
comedy
aime
documentary
drama
fantasy
filmnoir
horror
musical
mystery

romance 3

scifi

(valid - Train) Causal Grad

View 1: Shine, go, shawshank, psycho, dumber
View 2: Rocky, october, casino, muppet, payback
View 3: forrest, gump, carrie, now, saving

View 4: i, house, monty, at, life, dark

View 5: good, club, young, stripes, die

View 6: 1978, out, witness, shining, chocolate
View 7: space, la, love, best, graduate

View 8: die, life, black, true, amistad

(Drama) View 0: amadeus, amistad, farewell, thunderball
(Filmnoir) View 1: spartacus, bad, miracle, croupier
(Mystery) View 2: Werewolf, serpico, wrath, hunt
(Romance) View 3: Wives, Sister, Guys, Titanic
(Children) View 4: Pink, Parenthood, Alice, Jungle
(Animation) View 5: Titans, apollo, dancing, willy
(Musical) View 6: singers, chuck, arlington, lovers
(Adventure) View 7: cube, walking, benjamin, felicia



Without MT-CRL (baseline):

Train Causal Grad
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(Drama) View 0: amadeus, amistad, farewell, thunderball

(Filmnoir) View 1: spartacus, bad, miracle, croupier
(Mystery) View 2: Werewolf, serpico, wrath, hunt
(Romance) View 3: Wives, Sister, Guys, Titanic
(Children) View 4: Pink, Parenthood, Alice, Jungle
(Animation) View 5: Titans, apollo, dancing, willy
(Musical) View 6: singers, chuck, arlington, lovers
(Adventure) View 7: cube, walking, benjamin, felicia



MT-CRL can learn cross-task similarity

MovielLens




Thanks for Listening~



