
NeurIPs 2022

Turbocharging Solution Concepts:
Solving NEs, CEs and CCEs with

Neural Equilibrium Networks

Luke Marris, Ian Gemp, Thomas Anthony
Andrea Tacchetti, Siqi Liu, Karl Tuyls

Equilibrium Solving in Multiagent Learning Algorithms

Value-based methods such as Nash Q-Learning [Hu,
2003] and Correlated Q-Learning [Greenwald, 2004]
solve for subgame-perfect equilibria in terminating
Markov Games.

These approaches involve estimating action values
(equivalent to a normal-form games, or payoffs
Gp(a)) at each state.

Policies are the equilibrium solutions (eg NE or CE) at
these states. In these algorithms, equilibria have to be
recomputed:

1. Each time the action-values are updated
2. (For continuous or large state game) Each time

an action is taken

These solutions need to be solved frequency.
However, because the action values are
approximations, often defined using a function
approximator, high accurate solutions may not be
important.

Traditional iterative equilibrium solvers are accurate,
but take a relatively long and nondeterministic
amount of time to converge, and may fail on
ill-conditioned games.

The niche: fast, deterministic, approximate solvers.

The Goal: Train a feedforward neural network to map
payoffs directly to equilibrium solutions.

Gp(a) → 𝜎(a)

The Result: Neural Equilibrium Solver

Properties:

1. Finds a unique equilibrium
2. With flexible equilibrium selection objectives
3. Can be trained over all games of a specific shape
4. Can be trained without supervised signal
5. Is a differentiable model
6. Is super fast

How did we do this… ?

The Secret Sauce (1): Invariant Preprocessing and Sampling

Payoffs, Gp(a) ⊂ (-∞, +∞), can be any finite real number. It is
impossible to uniformly sample from this full space. And a
non-uniform sample would bias a network.

Invariances are transforms to payoffs that do not change
the space of equilibria. Two such invariances are:

● Offset of each player’s payoff
● Positive scale of each player’s payoff

We can use these invariances (e.g. zero-mean offset,
unit-norm scale) to map the space of payoffs to a smaller
invariant subspace. Benefits:

● Now possible to uniformly sample over this subspace.
● Neural network does not need to learn redundancies in

scale and offset.

The network can be trained for all games of a specific shape.

Different possible invariant
subspaces with different scale
normalizations.

The Secret Sauce (2): Unique Solution

In general, there are many possible
equilibria for games. Many solvers simply
find any equilibrium, or any from a set
according to some objective.

Mixing parameters: 𝜇, 𝜌

Our method solves for a unique equilibrium by mixing between a
number of convex parameterisable equilibrium selection criterion:

1. Linear welfare maximization.
2. Distance to an arbitrary target joint distribution.
3. Target equilibrium approximation parameter.

Benefits:

● Better optimization landscape
● Unique equilibrium selection

target joint
parameter

primal variable
(output of NN)

target linear
parameter

target
approximation
parameter

dual variable
dual variable Gains from payoffs

(input of NN)

The Secret Sauce (3): Unsupervised Loss

Traditionally, neural networks are trained in a supervised
fashion. For example with (input (Gp(a)), truth (𝜎*(a))) pairs.
This is prohibitive because solving for the truth requires
running expensive iterative solvers (discussed earlier).

We formulate an unsupervised loss function that does
require ground truth targets to be trained. Loss and
gradients can be computed just from sampling inputs.

Benefits:

● Infinite training regime (no pre-computed dataset)
● Training data can be sampled online and on-device
● Very fast training loop

Dual loss function:

Note there is no ground truth, 𝜎*(a).

The Secret Sauce (4): Dual Space Optimization

CE primal problem:

● Primal variables: AN

● Linear constraints: NA2

● Nonnegative constraints: AN

● Equality constraints: 1
● Objective: min-max

CCE primal problem:

● Primal variables: AN

● Linear constraints: NA
● Nonnegative constraints: AN

● Equality constraints: 1
● Objective: min-max

CE dual problem:

● Dual variables: NA2

● Linear constraints: 0
● Nonnegative constraints: NA2

● Equality constraints: 0
● Objective: loss

CCE dual problem:

● Dual variables: NA
● Linear constraints: 0
● Nonnegative constraints: NA
● Equality constraints: 0
● Objective: loss

Benefits:

● Huge reduction in number of
variables

● Huge reduction in number of
constraints

● Nonnegative constraints are
simply implemented

● Loss function much easier to to
optimize over a min-max
objective

N: Number of players

A: Number of actions per player

Notice that these reductions scale well to large games (large N and large A).

The Secret Sauce (5): Equivariant Architecture

There are many equivariances in the representation of normal-form games.
Equivariances are transforms to the payoffs that change the equilibrium in a
predictable way. Two such equivariances:

1. Permutation of actions in a payoff results in the same permutation of
actions in the joint.

2. Permutation of players in a payoff results in the same transposition of
players in the joint.

We can exploit these equivariances by building them into the architecture of
the neural network. We use a channel dimension and pooling functions to
achieve this (see paper for details).

This has three benefits:

1. Reduces the number of parameters required the network requires
2. Equivariant games give consistent results
3. Each sample is equivalent to training over all permutations

As games get larger, the number of permutations grows rapidly:

G1(a)

𝜎(a)G2(a)

G1(a)

𝜎(a)G2(a)
Player permutation equivariance:

Action permutation equivariance:

See you at the Poster

Thank you for
Listening

