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The Myths of Non-contrastive Learning

1. Why do most non-contrastive self-supervised methods learn collapsed
solutions when the prediction head is absent in the network architecture?

2. How does the trainable prediction head help optimize the neural network to 
learn diverse representations in non-contrastive self-supervised learning?

• Implications: This effectively reduces the analysis of training a randomly-
initialized prediction head to the analysis of training an identity-initialized 
prediction head, which has benign properties at initialization.

The most typical form of non-contrastive learning optimizes 
the following objective:

where 𝑋(") and 𝑋($) are different “views” of the same data, 
generated by data augmentations. The goal here is to align 
the representations of augmented pairs.

(It’s the contrastive loss without the negative examples, that’s why it’s called 
non-contrastive)

The Collapse Solutions and the Implicit Bias of Optimization
• This objective 𝐿%&'() has many obvious collapsed but globally optimal

solutions. For example, dimensional collapse is when all coordinates of 𝜙 are 
perfectly correlated.

• But by adding a trainable prediction head on top, we can miraculously avoid 
learning such degenerate solutions, resulting in the following SimSiam
objective: where 𝑔 is a MLP (possibly linear), and 𝑺𝑮[⋅] is the stop-gradient:

• Mysteriously, optimizing 𝐿*'+*'&+ avoids learning the collapsed solutions, 
even when it still has the same collapsed optima. 

• A series of prior works have explored the possibilities of non-contrastive 
learning, they found that diversity is missing in collapsed solutions, and 
explicitly enforcing diversity can help generalization (e.g. Barlow-Twins).

𝐿%&'() = 𝐸,("),,($)[||𝜙 𝑋 " − 𝜙 𝑋 $ ||$]

𝐿*'+*'&+ = 𝐸,("),,($)[||𝑔 ∘ 𝜙 𝑋 " − 𝑺𝑮[𝜙 𝑋 $ ]||$]

Visualization of intermediate features in Wide-ResNet. Left: dimensional collapsed features, all 
features are alike; Middle: well-generalizing features, which are diverse and semantic; Right:
neuron correlations of projection head features or encoder features.

Intro to Non-contrastive learning

Challenges (conceptual and theoretical):
• How do we know what the deciding factors are for training algorithms to 

choose between collapse/non-collapse solutions?
• Currently, no optimization theory of neural networks can characterize the 

dynamics of jointly training two layers (unless in NTK regime), but
understanding the prediction head requires solving the full dynamics.

Simplifying the Problem: Identity-initialized Prediction Head

Our intuitions and observations
• From our theory of [Wen & Li, 2021], if we can reduce non-contrastive learning to 

(learning from the positive pairs in) contrastive learning, we might have a chance of 
analysis. This requires fixing the prediction head to be close to the identity matrix. 

• But freezing the prediction head would result in collapses, can we just initialize it to 
identity? Turns out we can use the identity-initialized prediction head! Moreover, 
we can even fix the diagonal of the prediction head matrix during training:

More interestingly, our observations refute the symmetric prediction head theories of non-
contrastive learning in [Tian et al. 2021, Wang et al. 2022] as explanations of the effects of 
prediction head. In fact, the prediction head can be very asymmetric during the training 
process, as shown by our observations on the off-diag matrix of prediction head below:

Problem Setup and Main Results

Phase I: learning the strong feature
At the beginning of training, one neuron of 𝜙 will 
soon learn to detect the strong feature 𝑣", while 
other neurons and features remain largely 
unlearned. (When we freeze the pred head, all 
neurons go through this phase)

Strong features vs weak features
In order to describe the collapses (especially the dimensional collapse), we assume our dataset consists of 
two types of features: The strong feature has more significant signal strength, and the weak feature has 
less. In fact, we let 𝑣", 𝑣$ ∈ 𝑅. to be the two features, with 𝛼" = ||𝑣"|| ≫ 𝛼$ = ||𝑣$|| (there are many 
similar assumptions that are also covered by our theory). For simplicity of theory, we assume our data is 
of the following patch format:

For the neural network, we let 𝜙 be a one-layer 
convolutional network with 𝑚 neurons (note that 
without over-param the learning task is harder) 
with cubic activation. We denote the prediction 
head 𝑔 ⋅ = 𝐸 ∈ R+×+ (initialized to identity 
and has fixed diagonals). Moreover, we add a 
BN layer before the outputs of each branch 
(during training), making the objective become:

𝐿*'+*'&+(𝜙, 𝐸) = 𝐸,("),,($)[||𝐵𝑁[𝐸𝜙 𝑋 " ] − 𝑺𝑮[𝐵𝑁 𝜙 𝑋 $ ]||$]

Let 𝑚 = 2. If we train the neural network 𝜙 using SGD (with fresh samples) for polynomially many 
iterations on the objective 𝐿*'+*'&+, then with high probability we will obtain a neural net 𝜙 such that 
𝜙" detects feature 𝑣" and 𝜙$ detects feature 𝑣$, and no collapses happen.

Theorem 1& Corollary 2 [training the pred head]

Let 𝑚 ≤ 𝑜 0"
0$

. If we train the neural network 𝜙 with SGD for polynomially many iterations on the 
objective 𝐿*'+*'&+ but with prediction head 𝐸 ≡ 𝐼$ kept fixed, then with high probability we will 
obtain a neural net 𝜙 that only detects feature 𝑣" in all its neurons. That means 𝜙 is a dimensional 
collapsed solution.

Theorem 3& Corollary 4 [training without the pred head]

The Four Phases, and the substitution and acceleration effects.

We prove that, when we train the prediction head, the learning process will go through four phases: 

Phase II: the substitution effect
After learning the strong feature in one neuron, 
the prediction head will learn to substitute this 
learned feature for the strong feature in other 
neurons, to decrease the objective and help align 
the positive pair.

Phase III: the acceleration effect
After phase II, where prediction head has learned 
to substitute the strong feature for the slower 
learning neurons, the learning of the weaker 
feature in these substituted neuron will be 
accelerated, due to the interactions of prediction 
head, stop-gradient operation, and output 
normalization. All of them contributed to the
implicit bias of accelerating weak feature 
learning in this phase.

Phase IV: the end phase
At the end of the training, both strong and weak 
features are learned by different neurons of 𝜙, 
and the prediction head will reverse its trajectory 
and converge back to the identity, theoretically 
confirming the rise-and-fall trajectory of off-diag
of the prediction head.

In fact, as the substitution can only go one way, 
it matches well with our experimental results on 
the off-diag dynamics of prediction head.

An interesting observation: the off-diag of the prediction head displays a consistent 
rise-and-fall pattern, which will be proven in our theory J.


