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e Feature-vector space 2°= RY, f: 2% {0,1}.
e Define label proportion o(B,f) = Avg{f(x) : x € B} forbagB & #°
e Training examples (B, o(B,f)), goal is to train h consistent with f.

e h: 25 {0,1) satisfies B if o(B,h) = o(B,f)

Goal: Given (B,, o(B,,f)) sampled from some distribution, (k=1,...,m) find hypothesis
h : 2°—{0,1} maximizing # satisfied bags B, .

Our focus: When the target concept f is a linear threshold function (LTF) or halfspace.

e f = pos({r, x)+ c) where pos(a) = 1ifa > 0, 0 otherwise.
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e Efficient algorithm that finds an LTF satisfying % fraction of all the bags.
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Is there algorithm satisfying €2(1)-fraction of bags of size > 2 ?
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Our Contributions

Given ({(B, , o(B,.f))} : k=1,...m)s.t. |B,| = q, fis unknown LTF:
Algorithms:

e If g =3, an efficient algorithm to satisfy at least (1/12)-fraction of the bags.
e Forq> 3, an efficient algorithm to weakly-satisfy €2(1/q)-fraction of bags.

Hardness: NP-hard to find any function of constantly many LTFs that

e satisfies (1/q + &)-fraction of bags for any constant q € Z*,
e satisfies (4/9 + d)-fraction of bags for q = 2.

for any constant 6 > 0.
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SDP of [saket, NeurlPS'21] for q = 2:

We can assume that the satisfying LTF is pos({r*, x)) with non-zero margin.

For bag B = {x,, x,} {r,, x, ){r,, x,)< 0 if B is non-monochromatic.

With r.(r.)" as a soln. write the feasible SDP for symmetric psd R:
(x,)’'R x, < 0 for all non-mon. bags B & (x)'R x> 0 for all x.

Factor R = L'L. Rounding based on sign of(in, g> for random gaussian vector g.

Problem: For q = 3 : the sign of (r,, x, ){r,, x,>not determined by the label proportion for
non-monochromatic bags.
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Our novel SDP for q = 3:

Key idea: Use relaxations of R using > partial ordering (Loewner order).
Observation: For a non-monochromatic bag B = {x,, X,, X,}

at least one of (r,, x, )<r,, x,» or r,, x, )<r,, X, is negative.

R = R:=r(r,)" if (r, x, X, xj>< 0 and 0 o/w., is a feasible soln to:

(x,)'’RMx, <0, (x,))RMx, <0, (x,) (R +R"x 2 (x,)'Rx,, R> R"}forj=2,3
V' non-monochromatic bags B = {x,, X,, X,}.
Rounding: WLOG (x,)'"Rt"2?x. > (x.)"Rx, /2. Factor R=L'L.

Can we show that £ Lx1, Lx2 is at least some constant 00 >07
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(1) © there exists Cs.t. B=L'Cand A>C'C.
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(1) along with (x,)'R™"?x. 2 (x,)"Rx, / 2 imply that £ Lx., Cx, < x/3. Thus, £ Lx, Lx, 2 /6.

Future Work: Algorithm for satisfying bags of size > 3.

LLP-learning other classifiers, deviation-based objectives.



