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Preference-based RL
• Traditional RL requires a hand-engineered reward function.

• PbRL constructs a preference predictor, and optimizes the reward function 
through a classification task.

• Key challenge: feedback-efficiency
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Motivation

• Confirmation bias: a network overfits to inaccurate targets predicted 

by another network.

• When there are few preference labels, PbRL methods will likely learn 

an inaccurate reward function, therefore the Q-function may overfit 

to the inaccurate outputs of the reward function.
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• Main idea: consider the performance of the Q-function in the reward learning
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Experiments
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Conclusion

• We propose a novel preference-based RL algorithm, Meta-Reward-Net

(MRN), which considers the performance of the Q-function in reward 

learning with convergence guarantee.

• We demonstrate that MRN outperforms preference-based RL baselines

on several complex control tasks and improves the feedback efficiency.
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