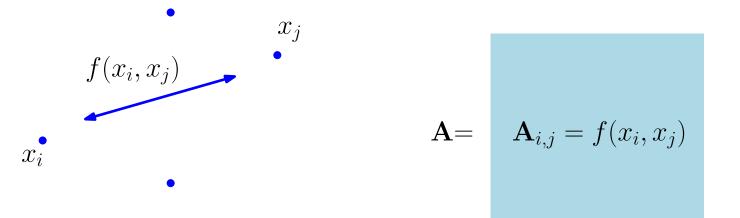
Faster Linear Algebra for Distance Matrices **Piotr Indyk, Sandeep Silwal** MIT (Oral Designated Paper)

Distance Matrices

Given a dataset $X \subset \mathbf{R}^d$ of n points, the $n \times n$ distance matrix **A** records the pairwise distances, under a distance function f.

We study the cases where $f = \ell_1, \ell_2, \ell_\infty$ as well as $f = \ell_p^p$ and other functions.



Distance matrices are ubiquitous in ML but require $\Omega(n^2)$ time and space to use.

Goal: Scalable and efficient algorithms for distance matrices.

Three Gems of the Paper

Consider the ℓ_1 case: $\mathbf{A}_{i,j} = ||x_i - x_j||_1$.

Theorem 1: For any input vector y, we can compute Ay exactly in O(nd) time after $O(nd \log n)$ preprocessing.

Not all distance functions admit fast matrix vector products.

Applications of our Results

Matrix vector products imply faster algorithms for many **down-stream applications** including:

1)Iterative Methods 2) Matrix Multiplication 3) Low-rank Approximation 4) Eigenvector Approximation 5) Linear Systems Solving

Sample of Applications for the ℓ_1 Function

Problem	Runtime	Prior Work	
$(1 + \varepsilon)$ Relative error rank k low-rank approximation	$ ilde{O}\left(rac{ndk}{arepsilon^{1/3}}+rac{nk^{w-1}}{arepsilon^{(w-1)/3}} ight)$	$O\left(rac{ndk}{arepsilon}+rac{nk^{w-1}}{arepsilon^{w-1}} ight) \ [ext{BCW20}]$	
$(1 \pm \varepsilon)$ Approximation to top k singular values	$ ilde{O}\left(rac{ndk}{arepsilon^{1/2}}+rac{nk^2}{arepsilon}+rac{k^3}{arepsilon^{3/2}} ight)$	$\tilde{O}\left(\frac{n^2 dk}{\varepsilon^{1/2}} + \frac{nk^2}{\varepsilon} + \frac{k^3}{\varepsilon}^{3/2}\right)$ [MM15]	
Multiply distance matrix A with any other $C \in \mathbb{R}^{n \times n}$	$ ilde{O}(nd)$	$O(n^w)$	
Any iterative method using T matrix vector products	$ ilde{O}\left(ndT ight)$	$O(n^2d + n^2T)$	

 $\omega \approx 2.37$ denotes the matrix multiplication constant.

See full paper for further applications for other functions.

Experiments

We perform empirical evaluations for our ℓ_1 matrix vector product upper bound. Similar results apply for upper bound results for other functions.

Consider the case $\mathbf{A}_{i,j} = ||x_i - x_j||_{\infty}$.

Theorem 2: For any $\alpha > 0$ and $d = \omega(\log n)$, any algorithm for exactly computing Az for any input z, where A is the ℓ_{∞} distance matrix, requires $\Omega(n^{2-\alpha})$ time (assuming the Strong Exponential Time Hypothesis).

We can also initialize (approximate) distance matrices in time faster than previously known results.

For the ℓ_2 case, the standard way to create an approximate distance matrix is to use dimensionality reduction onto $O(\log n)$ dimensions (Johnson Lindenstrauss Lemma) and compute the distance matrix in the projected space, which takes time $O(n^2 \log n)$.

Theorem 3: For any $\varepsilon \in (0, 1)$, we can calculate **B** such that each entry of **B** satisfies $(1 - \varepsilon) ||x_i - x_j||_2 \leq \mathbf{B}_{ij} \leq (1 + \varepsilon) ||x_i - x_j||_2$ in time $O(\varepsilon^{-2}n^2 \log^2(\varepsilon^{-1} \log n))$.

This result requires tools **beyond** dimensionality reduction as the Jonhson Lindenstrauss Lemma is tight!

See paper for additional theoretical results and full proofs!

As matrix-vector queries are the dominating subroutine in many key practical linear algebra algorithms such as the power method for eigenvalue estimation or iterative methods for linear regression, a fast matrix-vector query runtime automatically translates to faster algorithms for downstream applications.

Dataset	(n,d)	Algo.	Preprocessing	Query Time
Gaussians	$(5\cdot 10^4, 50)$	Naive	$453.7~\mathrm{s}$	$43.3 \mathrm{\ s}$
		Ours	$0.55~{ m s}$	0.09 s
MNIST	$(5 \cdot 10^4, 784)$	Naive	$2672.5~\mathrm{s}$	$38.6 \mathrm{\ s}$
		Ours	$5.5 \mathrm{s}$	$1.9~\mathrm{s}$
Glove	$(1.2 \cdot 10^6, 50)$	Naive	-	$\approx 2.6 \text{ days}$
		Ours	$16.8 \mathrm{\ s}$	$3.4 \mathrm{~s}$

(n, d) denotes the number of points and dimension of the dataset, respectively. Query times are averaged over 10 trials with Gaussian vectors as queries.

We observe > 3 orders of magnitude speedup over naive methods!

See paper for full details.