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Motivation

ML systems are fragile and susceptible to imperceptible attacks [GSS15].
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Problem Setup

« T CRYL,Y ={+1}.

« A two-layer RelLU net parameterized by (a, W)
fix;a, W) := — ) a,6(w/x),0(2) is ReLU.

m 1

» Attack model: £, norm-bounded attack with
perturbation budget R. X" € %B,(X, R).

X h = 6(WX) y = a' 6(Wx)
iInput layer hidden layer output layer

SSRD19]: Propose an algorithm to generate bounded LO-norm adversarial perturbation with guarantees for arbitrary deep networks.
DS21]: Multi-step gradient ascent can find adversarial examples for random RelLU networks with small widths.

BCGT21]: A single gradient step finds adversarial examples for sufficiently wide but not extremely wide randomly initialized RelLU networks.
BBC21]: Extend the above to randomly initialized deep networks.




Lazy Training Regime

The dominant model for (hon-robust) deep learning [JGH18, JT19, ADHL19].

Initialization: 1) a, ~ unif({—1, + 1}), fixed; 2) wy ~ #(0,1,), Vs € [m].

Key insights: ,

1. Provable generalization: there exists W : ||Ww, — Woll, =0 ( ),‘v’s € |m]
m

such that the generalization error is small.

2. Computational Tractability: Such W can be found by efficient first-order
methods such as Stochastic Gradient Descent (SGD).

Definition: The lazy regime is the set of all networks parameterized by (a, W),
C C
such that W € %, (WO, . ) = {W L wy —wpllr < Y Vs € [m] }

m m

Question: Are networks in the lazy training regime susceptible to adversarial attacks?



Main Result

For any model in the lazy regime, a single step of gradient ascent on f
suffices to find an adversarial example to flip the prediction sign.

C
Theorem: With probability at least 1 — y, forall W € &, (WO, > )
m

sign(f(x; a, W)) # sign(f(x + 0;a, W))

where 0 =V, f(X;a, W) with || = O(1/d),
max {d“, @(log (l/y))} <m<O0 (exp(d0'24)).

Remark: Imperceptible perturbation |[|o|| = @(1/\/5’).



Experiment
* Binary MNIST. Networks trained using SGD in the lazy regime
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Main Takeaway: Our theoretical bound can be tight as experiments show:||o]|| = @(1/\/;?)
(left), [|V/,(X; W)]|| = Q(\/c_i) (middle), || = O(1/d) (right) for different network widths.



Experiment
* Binary MNIST. Networks trained using SGD in the lazy regime
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Main Takeaway: Our theoretical bound can be tight as experiments show:||d]|| = @(1/\/3)
(left), [|V/,(X; W)]|| = Q(\/c_i) (middle), || = O(1/d) (right) for different weight deviations.



Experiment

 Binary MNIST. Networks trained using adversarial training in the lazy regime.
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Main Takeaway: a sharp drop in robust accuracy about the @(1/\/21) threshold for the perturbation
budget ||0|| as predicted by the main theorem (left); a phase transition in the robust test accuracy for

maximal weight deviation V around O(1/4/m) as required by the main theorem (right).



Conclusion

Main takeaway: Networks that are within the lazy training regime are vulnerable
to adversarial attacks.

Future directions:
1. Extend to multi-layer networks.

2. Consider stronger attacks, i.e. gradient ascent-based attack that is run to
convergence.

3. Understand the relationship between the width, the input dimension,
maximal weight deviation from the initialization, and robust accuracy.



Thanks!
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