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Problem Overview

* Transformer-based models [1] are increasingly relevant to tasks such as
guestion answering, paraphrasing, and even image processing [2, 3, 4].
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* However, training Transformer-based models is also expensive [5, 6]!
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* There is a strong incentive to reduce the training time of these models.



Potential Angle: Look at the Memory Footprint!
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* Increasing the batch size can improve GPU compute utilization [7].

* Activation memory is the main contributor to the memory footprint
compared to parameters, gradients, and optimizer states [8].



Overview of Prior Works

* Checkpointing
* Checkmate [9]
e Sublinear Memory Cost [10]

» Offloading
 vDNN [11]
e Capuchin [12]

* Compression/Quantization
* ActNN [13]

* CNN Specific r . |
* Gist [14] )\

* In-place ABN [15]



Tempo Techniques

* Tempo applies Transformer-specific optimizations that
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In-place GELU
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Sub-Layer Dropout Recomputation
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Recomputation of Y inside the Dropout layer.

* Attention memory is quadratic in the sequence length
e Can quickly recompute Y through cheap operations

e Saves a large amount of memory with minimum overhead



Results

e 2x and 1.5x batch size increase vs. Baseline on BERT Large at a Sequence Length of
512 on 2080Ti and V100 GPUs respectively.

* 16% and 5% improvement in throughput for these configurations.

* 39% improvement on BERT Base modified to use a Hidden Layer Size of 3072 at a
Sequence Length of 512 on an A100

e 27% improvement on BERT Large modified to use a Sequence Length of 1024 and 12
Layers on an A100

 Upto 19% and 26% improvement on 2080Ti for GPT2 [17] and RoBERTa [18]
respectively.
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Conclusion

* Transformer training requires more efficient training

e Activation memory footprint reduction can improve training
performance

* Tempo is a method that takes advantage of Transformer-based model
specifics, improving performance for a low-cost compared to existing

works
e Results show improvement across a variety of different parameters.
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