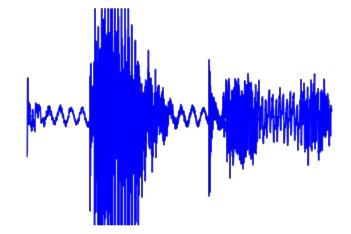
Variable-rate hierarchical CPC leads to acoustic unit discovery in speech

36th Conference on Neural Information Processing Systems (NeurIPS 2022)

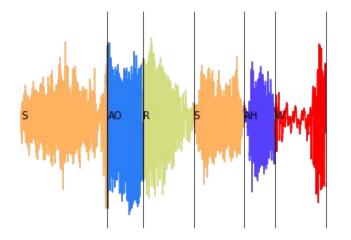
Santiago Cuervo^{1, 2}, Adrian Łańcucki³, Ricard Marxer², Paweł Rychlikowski¹, Jan Chorowski⁴,

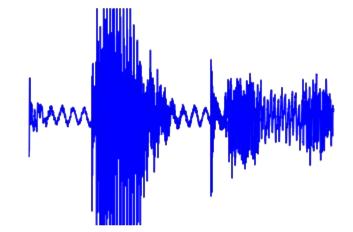
> ¹ University of Wroclaw, Poland ² Université de Toulon, Aix Marseille Univ, CNRS, LIS, France ³ NVIDIA, Poland ⁴ Pathway, France

Our setup: unsupervised acoustic unit discovery

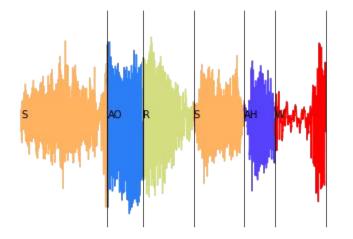


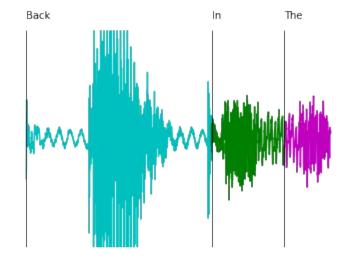
Our setup: unsupervised acoustic unit discovery



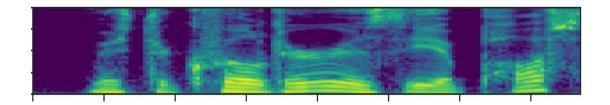


Our setup: unsupervised acoustic unit discovery

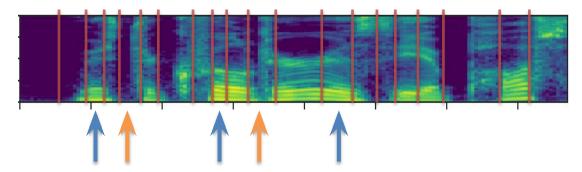




Our goal: unsupervised unit discovery

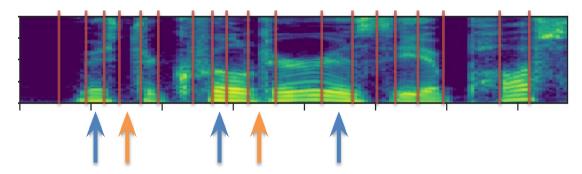


Our goal: unsupervised unit discovery



We want to learn to representations that allow us to **segment** and **cluster** speech data in order to discover information bearing units (eg. phonemes, syllables, words, etc.)

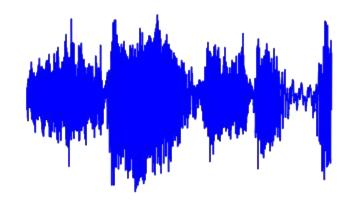
Our goal: unsupervised unit discovery



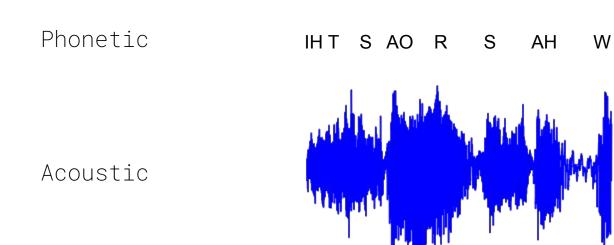
We want to learn to representations that allow us to **segment** and **cluster** speech data in order to discover information bearing units (eg. phonemes, syllables, words, etc.)

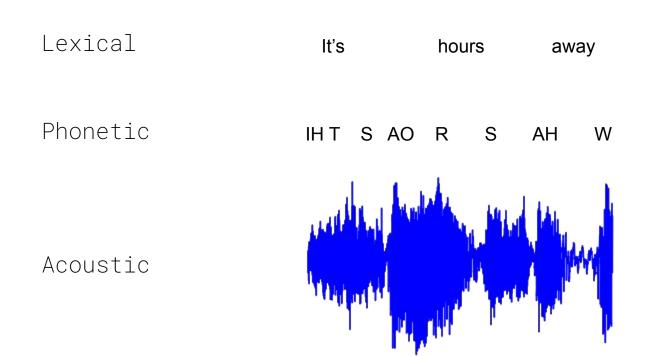
Motivations:

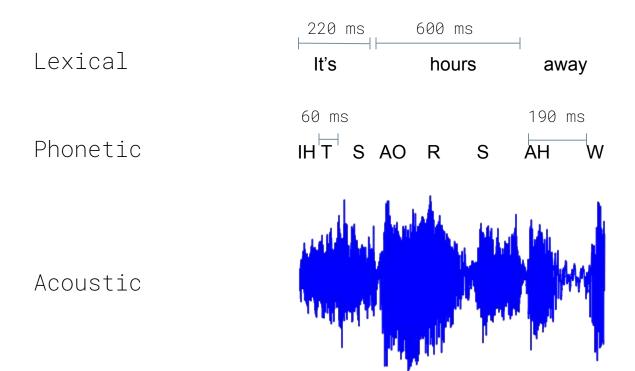
- Discrete units enable text-less NLP
- Reduced sampling rates and therefore reduced computational costs
- How can discrete units emerge from continuous perceptual data? It might provide hints on language acquisition.



Acoustic







Do our representation learners account for it?

Do our representation learners account for it?

Hierarchy? Only partially. Layers in deep neural nets learn an internal hierarchy of concepts, but the training criteria are only applied at the top level (layer).

Do our representation learners account for it?

Hierarchy? Only partially. Layers in deep neural nets learn an internal hierarchy of concepts, but the training criteria are only applied at the top level (layer).

Information density? Not really. Models usually process data at fixed input-driven rates (eg. pixels in images, frames in speech).

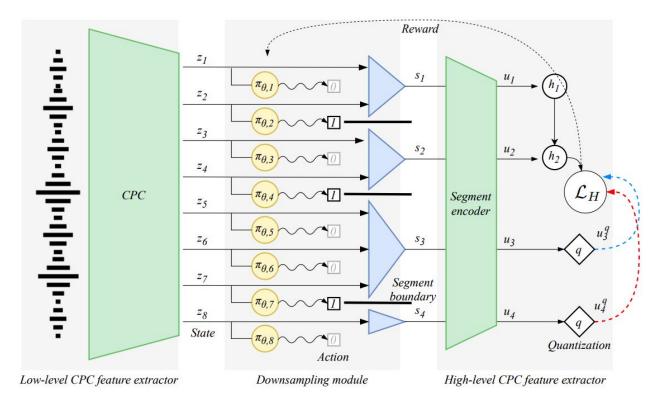
Do our representation learners account for it?

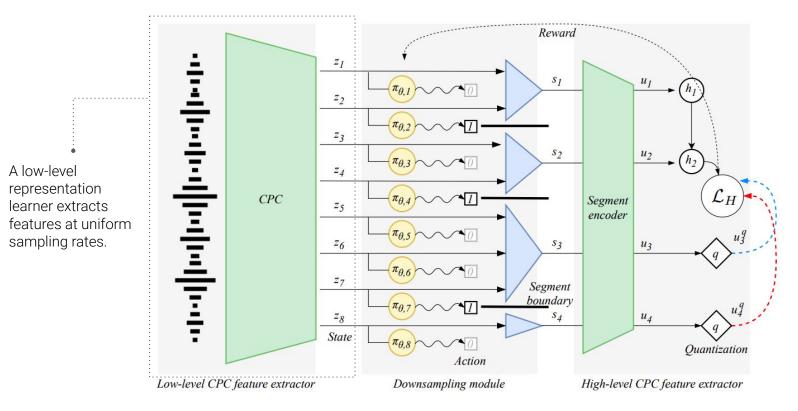
Hierarchy? Only partially. Layers in deep neural nets learn an internal hierarchy of concepts, but the training criteria are only applied at the top level (layer).

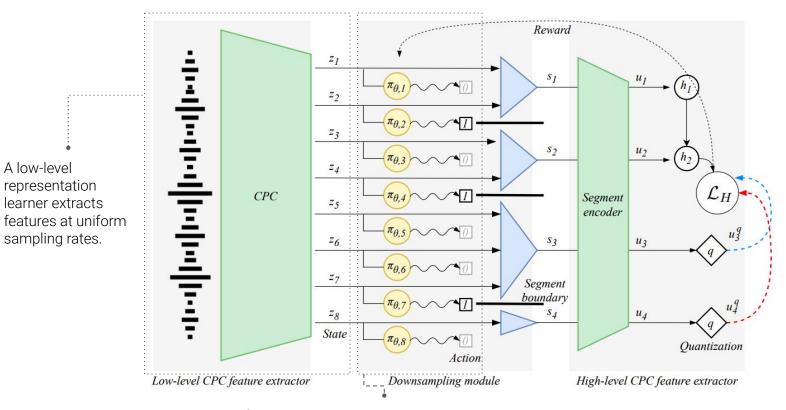
Information density? Not really. Models usually process data at fixed input-driven rates (eg. pixels in images, frames in speech).

So we work on representation learners which:

- 1. At each level extract features at different non-uniform information dependent rates.
- 2. At each level apply a training criterion.

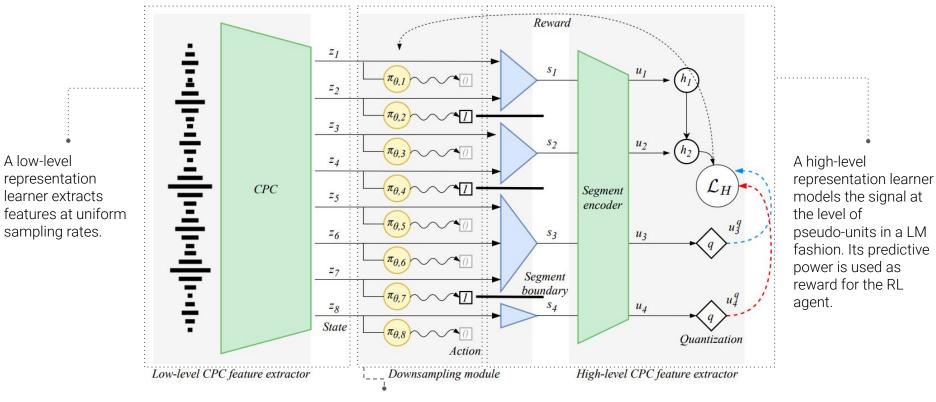






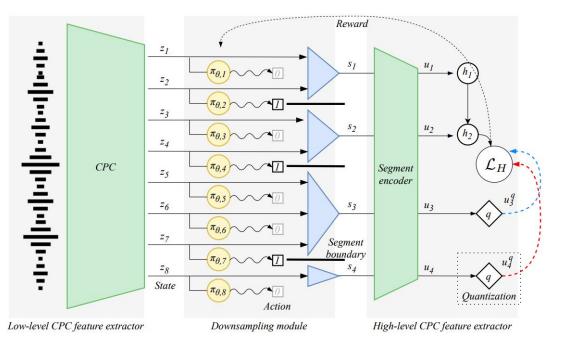
A reinforcement learning agent segments the signal and compresses the low-level feature segments into pseudo-unit representations.

S. Cuervo et al. "Variable-rate hierarchical CPC leads to acoustic unit discovery in speech", NeurIPS 2022. https://openreview.net/pdf?id=Jk8RVinHISE

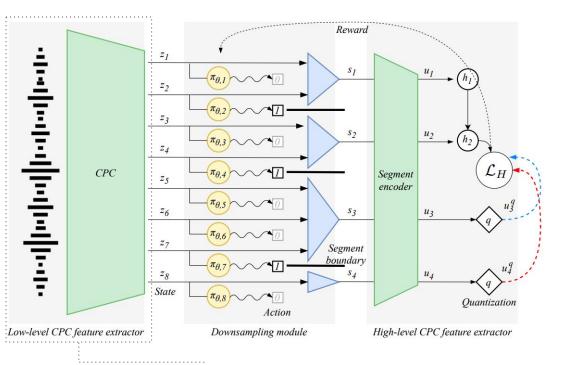


A reinforcement learning agent segments the signal and compresses the low-level feature segments into pseudo-unit representations.

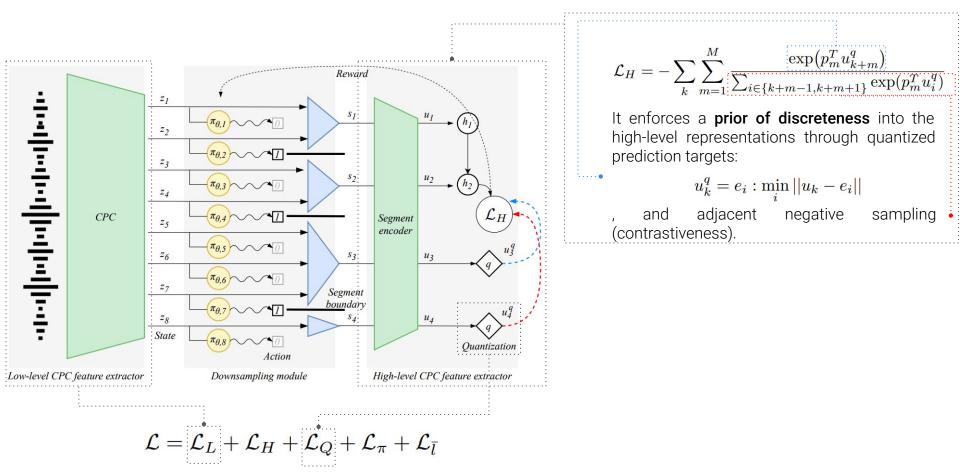
S. Cuervo et al. "Variable-rate hierarchical CPC leads to acoustic unit discovery in speech"", NeurIPS 2022. https://openreview.net/pdf?id=Jk8RVinHIsE

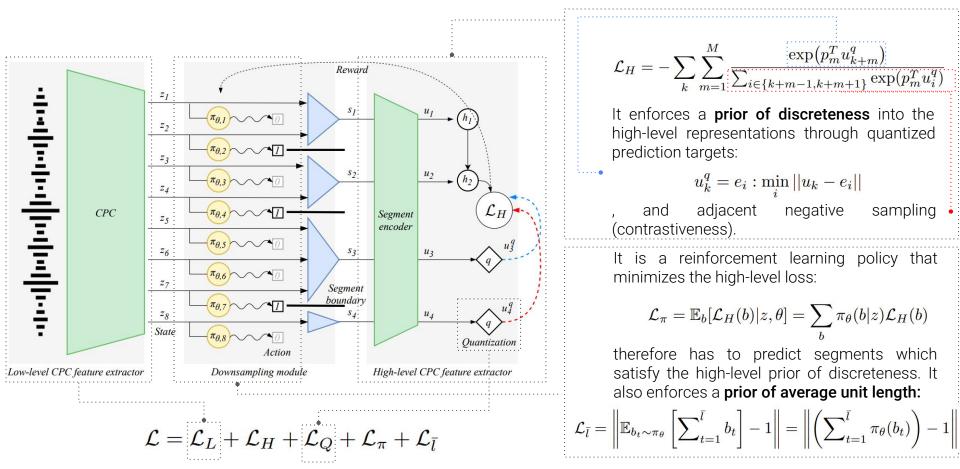


 $\mathcal{L} = \mathcal{L}_L + \mathcal{L}_H + \mathcal{L}_Q + \mathcal{L}_\pi + \mathcal{L}_{\bar{l}}$



 $\mathcal{L} = \mathcal{L}_L + \mathcal{L}_H + \mathcal{L}_Q + \mathcal{L}_\pi + \mathcal{L}_{ar{l}}$





Low-level representations evaluation

- We evaluate the downstream performance of low-level representations in the tasks of frame-wise linear phone classification and CTC phone transcription in the test split of LibriSpeech train-clean-100, and the ABX task in the ZeroSpeech 2021 dev-clean set.
- Overall our method improves phone discriminability when compared against multiple CPC-based hierarchical and non-hierarchical baselines, including a hierarchical model that uses supervised phone boundaries for downsampling

Architecture	Model	Frame accuracy ↑	Phone \uparrow accuracy \uparrow	$\underset{within}{\text{ABX}}\downarrow$	$\underset{across}{\text{ABX}}\downarrow$
Single level	CPC [Rivière et al., 2020] ACPC [Chorowski et al., 2021]	67.50 68.60	83.20 83.33	6.68 5.37	8.39 7.09
	Two-level CPC no downsampling	67.49	83.38	6.66	8.34
Multi-level	SCPC [Bhati et al., 2021] Two-level CPC w. downsampling mACPC [Cuervo et al., 2022] Ours	43.79 67.92 70.25 72.57	68.38 83.39 83.35 83.95	20.18 6.66 5.13 5.08	16.26 8.32 6.84 6.72
	Downsampling (supervised)	71.01	84.70	5.07	6.68

High-level representations evaluation

- We evaluate the downstream performance of high-level representations in the tasks of **phone transcription** in the test split of LibriSpeech train-clean-100. We additionally report the average sampling rate of the representations to evaluate compression.
- Our model gives the best results in phone accuracy and has the lowest average sampling rate among unsupervised methods with variable downsampling.

Downsampling	Model	Avg. sampling \downarrow rate (Hz)	Phone accuracy \uparrow
None	Two-level CPC no downsampling	100	83.41
Constant	Two-level CPC with downsampling	10.94	67.75
Variable	SCPC [Bhati et al., 2021] mACPC [Cuervo et al., 2022] Ours	15.91 14.47 12.32	55.49 69.66 78.93
	Downsampling (supervised)	10.87	85.74

Phone segmentation evaluation

Results on the test split of LibriSpeech train clean 100 and TIMIT test split. Our model produces segmentations competitive with the state-of-the-art, while being robust to non-speech events.

Dataset	Architecture	Model	Precision	Recall	F1	R-val
LibriSpeech clean 100	Single level	[Kreuk et al., 2020]	61.12	82.53	70.23	61.87
	Multi-level	mACPC [Cuervo et al., 2022] SCPC [Bhati et al., 2021] Ours	59.15 64.05 79.94	83.17 83.11 77.92	69.13 72.35 78.91	57.71 66.40 81.98
TIMIT (non-speech removed)	Single level	[Kreuk et al., 2020]	84.80	85.77	85.27	87.35
	Multi-level	mACPC [Cuervo et al., 2022] SCPC [Bhati et al., 2021] Ours	84.63 85.31 80.08	84.79 85.36 81.40	84.70 85.31 80.73	86.86 87.38 83.50

Conclusions & Where do we go from here?

Important takeaways:

- We have shown that accounting for the structure of the signal (hierarchy and spatial distribution of information) improves disentanglement of frame-level representations.
- Our objective function incorporating soft constraints of discreteness and average unit-duration leads to the unsupervised discovery of unit-boundaries that coincide with a human-made phonetic segmentation.

Interesting future research directions:

- Further analyze the effect of top-down feedback on the representations.
- Explore other high-level tasks to improve the quality of high-level representations.
- Going beyond phonetic: discovering higher-level units.

Paper: <u>https://openreview.net/pdf?id=Jk8RVjnHlsE</u> Code: <u>https://github.com/chorowski-lab/hCPC</u>