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o« Adaboost (Adaptive Boosting) [Freund-Schapire 95]

Godel Prize 2003

e Boosting is a fundamental methodology in ML with both:
o Tremendous practical success

o Solid theoretical foundations



Boosting

o Well-understood, mature theory for Supervised Learning.

o Can we leverage this powerful tool to do

Reinforcement Learning?
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supervised learner
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Boosting for Reinforcement Learning

Main Result

An efficient boosting algorithm that when given a classifier with edge:
succ(m) > (vmax,+cq succ(m*)

outputs a policy to e-minimize V* — V'™ in O (poly(a, e 1, \A])) episodes

e Sample complexity independent of |S| (number of states)
e Assuming Policy Completeness, State Coverage (see the paper for details)
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(Main Result) RL via Weak Learning

p
Gi\{en an exploratory Supervised weak learner | Online weak learner Type of weak
L policy class "
Episodic model 1/04eb 1/02e3
Given access fo an %Rollouts w. v-resets 1/ate® 1/a%e*
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Given an exploratory
policy class

(Main Result) RL via Weak Learning

Supervised weak learner

Online weak learner

Episodic model

Given access to an

L exploratory reset dist.
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(Bonus) RL via Supervised Learning
(improvement over known results in some settings)

This work CPI
Episodic model 1/e3 - 1/e4
Rollouts w. v-resets 1/e* 1/e*
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Strong Strong
supervised learner supervised learner RL learner
[ small policy class ] [ large policy class ] [competitive w. OPT]

succ(m) > (v maxy ey suce(m®)  suce(m) > 1-maxy e gsuce(n*)—e  V(m) > max V(n*) — &
End Result:
e Depth-2 neural network on top of weak learners to boost accuracy
e Uses recent agnostic boosting results
e Improvements on the RL to SL reduction

o Novel analysis of the Frank-Wolfe method for non-convex functions
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relim Experiments
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