A Boosting Approach to Reinforcement Learning

Nataly Brukhim

Princeton University

NeurIPS 2022

joint work with

Elad Hazan

Google & Princeton University Karan Singh

Carnegie Mellon University

Boosting

• Framework for combining *weak* learners to produce a *strong* learner

Boosting

- Framework for combining *weak* learners to produce a *strong* learner
 mildly accurate arbitrarily good accuracy
- Adaboost (Adaptive Boosting) [Freund-Schapire '95]

Gödel Prize 2003

- Boosting is a fundamental methodology in ML with both:
 - Tremendous practical success
 - Solid theoretical foundations

Boosting

- Well-understood, mature theory for Supervised Learning.
- Can we leverage this powerful tool to do

Reinforcement Learning?

Markov Decision Process

$$s \in S \qquad a \in \mathcal{A} \qquad r' \sim R(\cdot|s,a) \qquad s' \sim P(\cdot|s,a)$$
states discrete actions rewards transition model
$$V^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \left| a_{t} \sim \pi(s_{t}) \right] \qquad \underbrace{\mathsf{environment}}_{\mathsf{function}} \mathsf{environment} \mathsf{en$$

Goal Select policy $\pi\in\Pi\subset\mathcal{S} o\Delta_{\mathcal{A}}$ to minimize V^*-V^π

Weak supervised learner [small policy class]

 $succ(\pi) \geq oldsymbol{lpha} \max_{\pi^* \in oldsymbol{\Pi}} succ(\pi^*)$

 $succ(\pi) \geq lpha \max_{\pi^* \in \Pi} succ(\pi^*) \qquad succ(\pi) \geq 1 \cdot \max_{\pi^* \in \bar{\Pi}} succ(\pi^*) - \epsilon$

 $succ(\pi) \geq oldsymbol{lpha} \max_{\pi^* \in \prod} succ(\pi^*) \quad \ succ(\pi) \geq 1 \cdot \max_{\pi^* \in \overline{\Pi}} succ(\pi^*) - \epsilon \quad \ V(\pi) \geq \max_{\pi^*} V(\pi^*) - \mathcal{E}$

Main Result

An *efficient* boosting algorithm that when given a weak classifier with α edge:

$$succ(\pi) \geq oldsymbol{lpha} \max_{\pi^* \in \Pi} succ(\pi^*)$$

outputs a policy to ε-minimize V^*-V^π in $O(ext{poly}(lpha,arepsilon^{-1},|\mathcal{A}|))$ episodes

- Sample complexity *independent* of |S| (*number of states*)
- Assuming Policy Completeness, State Coverage (see the paper for details)

(Main Result) RL via Weak Learning

(Main Result) RL via Weak Learning

(Bonus) RL via Supervised Learning

(improvement over known results in some settings)

	This work	CPI
Episodic model	$1/\varepsilon^3$	$1/arepsilon^4$
Rollouts w. ν -resets	$1/arepsilon^4$	$1/\varepsilon^4$

 $succ(\pi) \geq oldsymbol{lpha} \max_{\pi^* \in oldsymbol{\Pi}} succ(\pi^*) \quad \ succ(\pi) \geq 1 \cdot \max_{\pi^* \in oldsymbol{ar{\Pi}}} succ(\pi^*) - \epsilon \quad \ V(\pi) \geq \max_{\pi^*} V(\pi^*) - \mathcal{E}$

End Result:

- *Depth-2* neural network on top of weak learners to boost accuracy
- Uses recent *agnostic* boosting results [Hazan-Singh'21,Brukhim-Hazan'21].
- Improvements on the RL to SL reduction
 - Novel analysis of the *Frank-Wolfe* method for non-convex functions

Prelim Experiments

