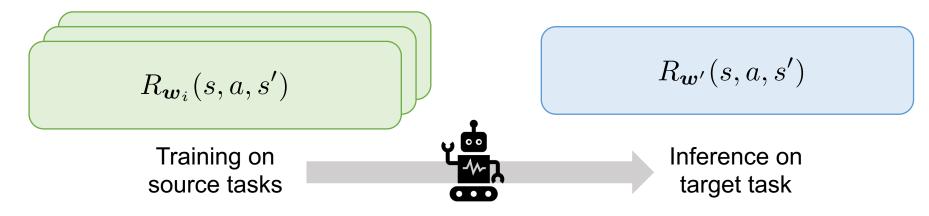
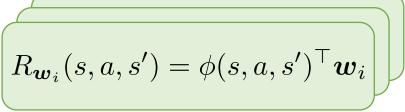
Constrained GPI for Zero-Shot Transfer in Reinforcement Learning

Jaekyeom Kim¹, Seohong Park² & Gunhee Kim¹



- Target tasks may be unknown during training
- Impractical or impossible to train on all possible tasks
- Re-using trained policies for new tasks could be useful



 $R_{\boldsymbol{w}'}(s, a, s') = \phi(s, a, s')^{\top} \boldsymbol{w}'$

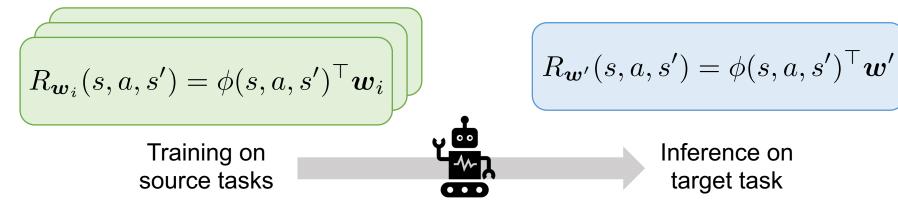
Training on source tasks

Inference on target task

Successor features (SFs) [1]

$$Q_{\boldsymbol{w}}^{\pi}(s,a) = \boldsymbol{\psi}^{\pi}(s,a)^{\top} \boldsymbol{w}$$

- Linear decomposition of value functions
- Allows fast policy evaluation on new tasks



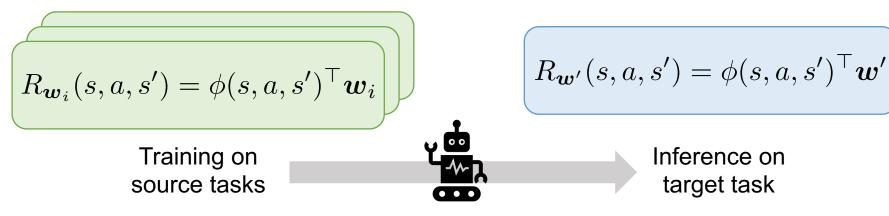
Successor features (SFs) + Generalized policy improvement (GPI) [1]

$$\pi_{\text{GPI}}(s) \in \underset{a}{\operatorname{argmax}} \underset{i}{\underset{max}{\operatorname{max}}} \tilde{Q}_{\boldsymbol{w}'}^{\pi_{i}}(s, a)$$

• Combining multiple value functions for policy *improvement*

Only fixed sets of SFs can be used for GPI!

No exploitation of "smoothness" of optimal values w.r.t. tasks!



Universal successor features approximators (USFAs) [2]

$$Q_{\boldsymbol{w}}^{\pi_{\boldsymbol{z}}}(s,a) = \psi(s,a,\frac{\boldsymbol{z}}{\boldsymbol{z}})^{\top}\boldsymbol{w}$$

Performing function approximation even w.r.t. tasks

Function approximators may not generalize well especially to novel, distant tasks!

Key Idea 1

Can we exploit the linearly decomposed reward structure to improve the universal function approximation?

Bounding Optimal Values for Novel Tasks

Theorem 1 (simplified). Given $w' = \sum_{w \in \mathcal{T}} \alpha_w w$ for $\alpha_w \in \mathbb{R}, \forall w \in \mathcal{T}$ the optimal value is lower- and upper-bounded as

$$L_{\boldsymbol{w}',\mathcal{T}}(s,a) \leq Q_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}'}}(s,a) \leq U_{\boldsymbol{w}',\mathcal{T},\boldsymbol{\alpha}}(s,a),$$

$$L_{\boldsymbol{w}',\mathcal{T}}(s,a) \coloneqq \max_{\boldsymbol{w}\in\mathcal{T}} \left[\tilde{Q}_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}}}(s,a) - \epsilon_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}}}(s,a) \right],$$

$$U_{\boldsymbol{w}',\mathcal{T},\boldsymbol{\alpha}}(s,a) \coloneqq \sum_{\boldsymbol{w}\in\mathcal{T}} \max \left\{ \alpha_{\boldsymbol{w}} \left(\tilde{Q}_{\boldsymbol{w}}^{\pi_{\boldsymbol{w}}}(s,a) + \epsilon_{\boldsymbol{w}}^{\pi_{\boldsymbol{w}}}(s,a) \right), \alpha_{\boldsymbol{w}} \frac{1}{1-\gamma} r_{\boldsymbol{w}}^{\min} \right\},$$

for maximum approximation error ϵ and minimum reward $r_{m{w}}^{\min}$.

- Relaxes prior bounds [3] to a wider range of tasks
- Tightest upper bounds can be computed with an LP solver

Bounding Optimal Values for Novel Tasks

Theorem 1 (simplified). Given $w' = \sum_{w \in \mathcal{T}} \alpha_w w$ for $\alpha_w \in \mathbb{R}, \forall w \in \mathcal{T}$ the optimal value is lower- and upper-bounded as

$$L_{\boldsymbol{w}',\mathcal{T}}(s,a) \leq Q_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}'}}(s,a) \leq U_{\boldsymbol{w}',\mathcal{T},\boldsymbol{\alpha}}(s,a),$$

$$L_{\boldsymbol{w}',\mathcal{T}}(s,a) \coloneqq \max_{\boldsymbol{w}\in\mathcal{T}} \left[\tilde{Q}_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}}}(s,a) - \epsilon_{\boldsymbol{w}'}^{\pi_{\boldsymbol{w}}}(s,a) \right],$$

$$U_{\boldsymbol{w}',\mathcal{T},\boldsymbol{\alpha}}(s,a) \coloneqq \sum_{\boldsymbol{w}\in\mathcal{T}} \max \left\{ \alpha_{\boldsymbol{w}} \left(\tilde{Q}_{\boldsymbol{w}}^{\pi_{\boldsymbol{w}}}(s,a) + \epsilon_{\boldsymbol{w}}^{\pi_{\boldsymbol{w}}}(s,a) \right), \alpha_{\boldsymbol{w}} \frac{1}{1-\gamma} r_{\boldsymbol{w}}^{\min} \right\},$$

for maximum approximation error ϵ and minimum reward $r_{m{w}}^{\min}$.

Can bound optimal values for new tasks using source SFs with small approximation errors

Constrained Training

To use the lower and upper bounds as constraints for training

Training of the universal approximators can be equipped with the constraints

$$L_{\boldsymbol{w}',\mathcal{T}}(s,a) \leq \tilde{\psi}(s,a,\boldsymbol{w}')^{\top} \boldsymbol{w}' \leq U_{\boldsymbol{w}',\mathcal{T},\xi(\boldsymbol{w}',\mathcal{T},s,a)}(s,a) \quad \text{ for } \boldsymbol{w}' \in \mathcal{W}$$

 Needs sampling of tasks in source tasks' linear span for the constraints

Key Idea 2

Only source successor features are needed and considered trustworthy

Constrained GPI

To apply the constraints at test time right before using GPI

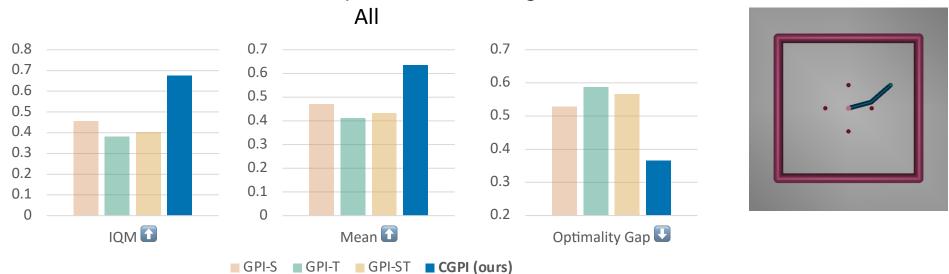
$$\pi_{\text{CGPI}}(s) \in \underset{a}{\operatorname{argmax}} \max_{\boldsymbol{z} \in \mathcal{C}} \left[\min \left\{ \max \left\{ \tilde{Q}_{\boldsymbol{w}'}^{\pi_{\boldsymbol{z}}}(s, a), L_{\boldsymbol{w}', \mathcal{T}}(s, a) \right\}, U_{\boldsymbol{w}', \mathcal{T}, \xi(\boldsymbol{w}', \mathcal{T}, s, a)}(s, a) \right\} \right]$$

Provides an analogous effect to the constrained training

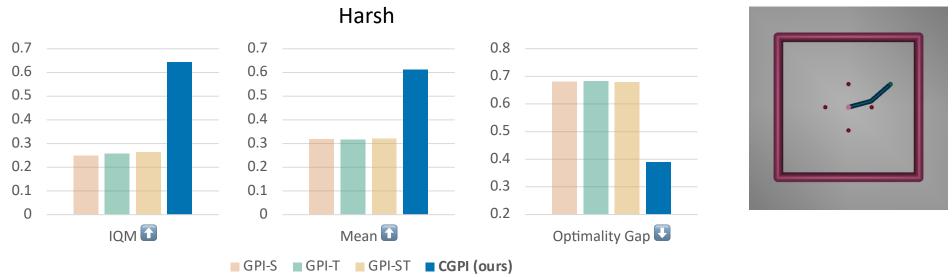
Do not affect (or hinder) the accuracy of source successor features

 No need for any modification to the training and allows re-using existing models

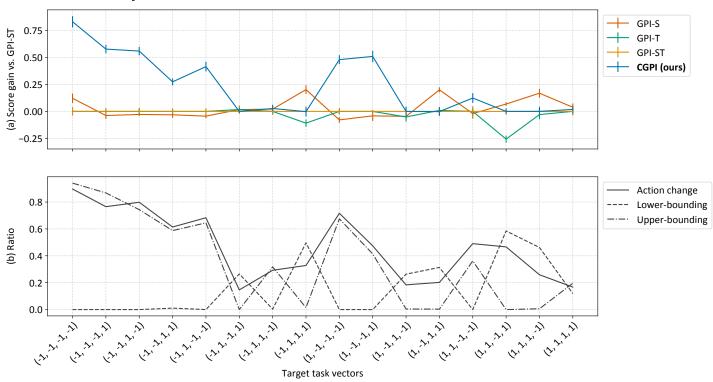
- Robot arm manipulation environment [4]
 - Four goals with different rewards
 - Agent is trained only with each goal with a fixed positive reward and tested on mixtures of positive and negative rewards



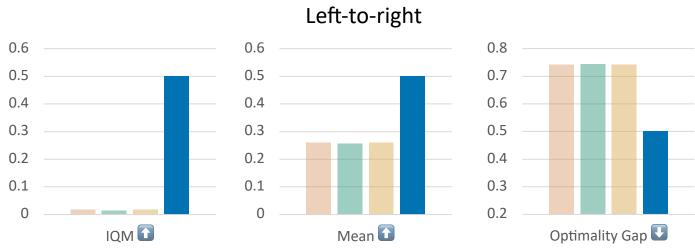
- Robot arm manipulation environment [4]
 - Four goals with different rewards
 - Agent is trained only with each goal with a fixed positive reward and tested on mixtures of positive and negative rewards



Robot arm manipulation environment [4]



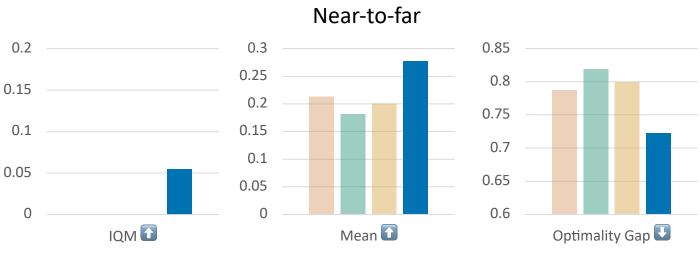
- DeepMind Lab environment [5] (with learned ϕ)
 - 3D first-person view, partially observable visual environment
 - The goal object with sparse reward functions
 - Test on goals from a completely disjoint area



GPI-ST

CGPI (ours)

- DeepMind Lab environment [5] (with learned ϕ)
 - 3D first-person view, partially observable visual environment
 - The goal object with sparse reward functions
 - Test on goals from a completely disjoint area



GPI-ST

Conclusion

- Presented lower and upper bounds on optimal values for novel tasks using source successor features
- Proposed constrained GPI, a simple test-time approach to bounding approximation errors and improving performance
- Showed notable performance improvements in robot arm manipulation and 3D first-person view environments

Thank you!

https://jaekyeom.github.io/projects/cgpi/

jaekyeom@snu.ac.kr