

UNIVERSITY^{OF} BIRMINGHAM

Multi-agent Dynamic Algorithm Configuration

<u>Ke Xue</u>^{*}, Jiacheng Xu^{*}, Lei Yuan, Miqing Li, Chao Qian[†], Zongzhang Zhang, Yang Yu (^{*}Equal Contribution, [†]Corresponding author) *NeurIPS'22*

Email: {xuek, qianc}@lamda.nju.edu.cn Nanjing University, China

Background

Dynamic algorithm configuration (DAC) is a new trend in Auto-ML.

Algorithm Configuration (AC)

Dynamic Algorithm Configuration (DAC)

https://www.automl.org/automated-algorithm-design/dac/

Background

DAC has been found to outperform static methods on many tasks

- learning rate tuning of deep neural networks
- step-size adaptation of evolution strategies
- heuristic selection of AI planning

The task of DAC typically focuses on a single type of hyperparameter

However, due to the increasing complexity of real-world problem modeling, there are many algorithms whose performance rests on multiple types of hyperparameters.

Background

Multi-objective optimization problems (MOPs)

Single-objective

Neural architecture search

- Max: accuracy
- Min: computation cost

ns (MOPS) $f_2 f_1 \text{ worse } Z$ $f_2 \text{ better } f_1 \text{ better } f_2 \text{ better } f_1 \text{ better } f_1 \text{ better } f_1 \text{ better } f_2 \text{ better } f_1 \text{ better } f_1 \text{ better } f_2 \text{ better } f_1 \text{$

Algorithm 1: MOEA/D

X

Parameters: Population size N, number T of iterations 1 Initialize a population $\{x^{(i)}\}_{i=1}^{N}$ of solutions, and a corresponding set $W = \{w^{(i)}\}_{i=1}^{N}$ of weight vectors; **2** t = 0 : 3 while t < T do for i = 1 : N do Randomly select parent solutions from the neighborhood of $w^{(i)}$, denoted as $\Theta^{w^{(i)}}$; 5 Use crossover and mutation operators to generate an offspring solution $x^{\prime(i)}$; 6 Evaluate the offspring solution to obtain $F(x'^{(i)})$; 7 Update the ideal point z^* . That is, for any $j \in \{1, 2, ..., m\}$, if $f_i(x'^{(i)}) < z_i^*$, then 8 $z_{i}^{*} = f_{i}(x^{\prime(i)});$ Update the corresponding solution of each sub-problem within $\Theta^{w^{(i)}}$ by $x'^{(i)}$. That is, 9 for each $w^{(j)} \in \Theta^{w^{(i)}}$, if $g(x'^{(i)} | w^{(j)}, z^*) < g(x^{(j)} | w^{(j)}, z^*)$, then $x^{(j)} = x'^{(i)}$ end 10 Complex and hard to tune t = t + 111 12 end

Solution How to dynamically adjust multiple types of configuration hyperparameters of complex algorithm such as MOEA/D?

We propose **MA-DAC**, modeling the configuration of a complex algorithm with multiple types of hyperparameters as a *cooperative multi-agent problem*, where **one agent works to handle one type of hyperparameter**.

MA-DAC

We consider a common-payoff, fully cooperative multi-agent setting Different agents have different actions (**heterogeneous**)

A	Algorithm 1: MOEA/D						
P	Parameters: Population size N, number T of iterations						
1 II	1 Initialize a population $\{x^{(i)}\}_{i=1}^N$ of solutions, and a corresponding set $W = \{w^{(i)}\}_{i=1}^N$ of						
weight vectors;							
2 $t = 0;$							
3 while $t < T$ do							
4	for $i = 1: N$ do						
5		Randomly select parent solutions from the neighborhood of $w^{(i)}$, denoted as $\Theta^{w^{(i)}}$;					
6		Use crossover and mutation operators to generate an offspring solution $x'^{(i)}$;					
7		Evaluate the offspring solution to obtain $F(x'^{(i)})$;					
8		Update the ideal point z^* . That is, for any $j \in \{1, 2,, m\}$, if $f_j(x'^{(i)}) < z_j^*$, then					
		$oldsymbol{z}_j^* = f_j(oldsymbol{x'}^{(i)});$					
9		Update the corresponding solution of each sub-problem within $\Theta^{w^{(i)}}$ by $x'^{(i)}$. That is,					
		for each $w^{(j)} \in \Theta^{w^{(i)}}$, if $g(x'^{(i)} \mid w^{(j)}, z^*) < g(x^{(j)} \mid w^{(j)}, z^*)$, then $x^{(j)} = x'^{(i)}$					
10	end						
11	t = t + 1						
12 end							

MA-DAC

We analyze the formulation of contextual MMDP

- State
- Action
- Reward
- Transition

MA-DAC

We analyze the formulation of contextual MMDP

- State
- Action
- Reward
- Transition

Multi-agent RL for Multi-objective optimization (MaMo) benchmark

Benchmark	Heterogeneous	# of agents	Stochastic	Application scenarios
Matrix Games [5]	×	2	Low	Game
MPE [20]	×	2-3	Low	Game
MAgent [42]	×	2-1000	Low	Game
SMAC [28]	\checkmark	2-30	Low	Game
Active Voltage Control [38]	×	3-38	Low	Control
MaMo (Ours)	\checkmark	2-4	High	Optimization

Experiment

We investigate the following three research questions (RQs):

- RQ1: How does MA-DAC *perform* compared with the baseline and other tuning algorithms?
- RQ2: How is the *generalization ability* of MA-DAC?
- RQ3: How do the *different parts* of MA-DAC affect the performance?

Experimental results show the superior performance of MA-DAC

Contribution

- 1) To the best of our knowledge, MA-DAC is the **first one** to address dynamic configuration of algorithms with multiple types of hyperparameters.
- 2) The contextual MMDP formulation of MA-DAC is analyzed, and experimental results show that the presented formulation works well and has good **generalization** ability.
- 3) The instantiation of configuring MOEA/D in this work can be used as a benchmark problem for MARL.
 - 1) The **heterogeneity** of MOEA/D's hyperparameters and the **stochasticity** of its search can promote the research of the MARL algorithms.
 - 2) Besides, the learned policies are **useful** for multi-objective optimization, which will facilitate the application of MARL.

Our code is available at https://github.com/lamda-bbo/madac

