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What does ‘risky’ means?




Hard Samples are Risky to be Classified
» Examples from MNIST

p(3F= digit ‘7)=50% p(F= digit ‘3°)=50%
p(§= digit ‘5°)=50% p(§ = digit ‘6’)=50%

-

Minimal misclassification rate: 50%!
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where 4 (s (:zc),y)z{]I ’ (m;# ; f (-’B)elzsfject,

¥

[ argmin ; Ry, (f)= fChow] » Intractable! (NP-hard)
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Calibrated Surrogate Losses

»> Class-Posterior Probability Estimation Based [2]:
argmax, p(y|x) —1 Severe overconfidence!
» Cost-Sensitive Learning Based [3], Learning to Defer [4]:

Restriction on loss functions (OvA Loss, CE Loss)
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Problem Reduction: K+1 Class Classification

[ argmin ; Ry, (f) = f* ] T[Rolc(f)R(;klc(2C)(R01(f)R(>)kl>]

K+1 class classification K class classification with rejection

[ min , Ry, (f) ] Equivalence! [ min ; Rox. (f) ]

 “
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Problem Reduction: K+1 Class Classification

> How to min,; Ro, ()? Not trivial!
). No data from the class ‘rejected’!
(2). Optimization of 0-1 loss is NP-hard!
> min Ri:(9) =B, le(g(x),y)] jnstead!
reject, argmax, u, =K + 1

where L (u,y) =®(u,y) +(1 —¢c)P(u,K +1) f(m){
> Motivation: R.:(g)=(2—c)R.(g)

where RQ(Q) — Ep(m,@) [(I)(g(w)’@)]

argmax, u,, else.

Main Result:
Any classification-calibrated surrogate @ can make LCCI) calibrated w.r.t. 5016.

R+ (g:)— R;» = Ry .(argmax; g;)— Ro.




More Discoveries

> Regret Transfer Bound,

» Estimation Error Bound,
» Analysis of GCE Loss,

» Instance-Dependent Cost
» Experimental Results...
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