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What does ‘risky’ means?



Hard Samples are Risky to be Classified

➢ Examples from MNIST

Minimal misclassification rate:  50%!
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Optimal Rejection Rule

➢ Chow’s Rule [1]

Rejecting samples with misclassification rate > c

➢Risk Minimization Framework:                                

where

Intractable! (NP-hard)
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➢ Class-Posterior Probability Estimation Based [2]: 

Severe overconfidence! 

➢Cost-Sensitive Learning Based [3], Learning to Defer [4]:

Restriction on loss functions (OvA Loss, CE Loss)
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Equivalence!

K+1 class classification K class classification with rejection

Problem Reduction: K+1 Class Classification
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➢ instead!

➢ Motivation: 

Problem Reduction: K+1 Class Classification

Main Result: 
Any classification-calibrated surrogate     can make         calibrated w.r.t. .



More Discoveries

➢ Regret Transfer Bound,

➢ Estimation Error Bound,

➢ Analysis of GCE Loss,

➢ Instance-Dependent Cost

➢ Experimental Results...
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