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Graph Similarity Computation: 

Graph Edit Distance (GED)

NP-hard



GNN for GED Computation

SimGNN,

GraphSim,

MGMN,

GMN,

GSimCNN,

GCN-Mean
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Limitation of GNN-base GSC Model
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Analyzing GED in Embedding Space
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Alignment Regularization

The best matching between two 
graphs can be inferred by minimizing 
the difference between the intra-
graph node-graph similarity and 
cross-graph node-graph similarity. 
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Alignment Regularization
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GNN for GED Computation

Alignment Regularization



Multi-Scale GED Discriminator

Alignment Regularization

(ignore during inference)

Multi-Scale GED Discriminator

Efficient gRaph sImilarity Computation (ERIC)



Accuracy and Efficiency Comparison

➢ ERIC consistently achieve state-of-the-arts 

performance across all evaluation metric.

➢ Alignment Regularization can be incorporated 

into existing methods and improve their 

performance, such as SimGNN and EGSC.

➢ ERIC is faster than all baseline models in the 

inference stage.
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