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Introduction

• Personalized federated learning faces many challenges:
• Expensive communication costs
• Training-time adversarial attacks
• Performance unfairness across devices

Can we balance different constraints of interest (i.e., communication
efficiency, robustness and fairness) simultaneously?

• The answer is YES!

• We propose a personalized FL method named as lp-proj based on Lp-regularization and
low-dimensional random projection. Multiple benefits of the proposed objective are
explored from both theoretical and empirical perspectives.
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Infimal Convolution

• Conventional federated learning:

min
w∈Rd

F (w) := G {F1(w), · · · ,FN(w)} . (1)

• We introduce a local model xk for each client k to fit the local data.

• Infimal Convolution: bridges local models and global model.

Fk(w) = {fk ⊗ λg} (w) := min
xk∈Rd

fk(xk) + λg(w − xk),

fk(xk) = Eξk

[
f̃k(xk ; ξk)

]
.

(2)

• g is the smoothing kernel, which is designed to characterize the relationship between local
models and global model.
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Subspace Regularization

• Concerning that communication cost is critical in the application of FL.

• High-dimensional data usually has low-dimensional representation.

• Random projection would preserve similarity of data vectors.

• We propose to regularize the projection of local models in a shared low-dimensional
space.

g(w − xk) =
1

p
∥P(w − xk)∥pp =

1

p
∥w̃ − Pxk∥ . (3)

• P is a dsub × d random matrix generated initially and fixed during training.
• dsub ≪ d is the dimension of the shared-and-fixed random subspace.

• Combining (1), (2) and (3), our personalized FL method is formulated as a bi-level
problem. We introduce the algorithm lp-proj, which alternatively minimizes the local
and global objectives with gradient descent.
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Benefits: Communication Efficiency, Robustness and Fairness

(Intuitions are provided here. For formal theoretical analysis, please refer to Section 4 in our paper.)

• Communication Efficiency: The global model w̃ is restricted to lie in a fixed
low-dimensional subspace. =⇒ Only w̃ of dimension dsub, instead of the full model xk of
dimension d , is communicated each round.

• Robustness and Fairness:
• (Near) consensus of model parameters in the low-dimensional subspace leaves flexibility

towards personalization and better generalization to the local data distribution.
• Lp-norm regularization is equivalent to launching an uncertainty set to the model parameter.

=⇒ We can enhance accuracy by searching for a model adaptive to the local data
distribution in the uncertainty set.
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Numerical Experiments - Personalization Accuracy Performance

• Personalization Accuracy Performance:

EMNIST, Train Loss
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EMNIST, Test Acc

0 50 100 150 200 250
Round

0.0

0.2

0.4

0.6

0.8

Te
st

_A
cc Ditto

FedAvg
LG-FedAvg
Per-fedavg
RSA
local
lp-Proj-1
lp-Proj-2
pFedMe

• lp-proj has comparable or even superior performance than other SOTA methods.
Moreover, the training process is more stable as the loss and accuracy curves have less
fluctuation.
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Numerical Experiments - Communication Efficiency

• Communication Efficiency:
EMNIST

Method Bytes Budget Test Acc Target Acc Used Bytes

FedAvg 4236900 ⋆ 0.7 445851400
Sketch 4236900 ⋆ 0.7 ⋆
lp-proj-1 4236900 0.906 0.7 174720
lp-proj-2 4236900 0.906 0.7 196560
LBGM 4236900 ⋆ 0.7 769902776
QSGD 4236900 ⋆ 0.7 673302175
DGC 4236900 ⋆ 0.7 ⋆it

LG-FedAvg 4236900 0.071 0.7 230786010

• Given a communication budget of bytes, lp-proj obtains ∼ 83.5% test accuracy
improvement on EMNIST.

• Given a target test accuracy, the communication cost is saved by 1320x on EMNIST

compared with the best competing method.
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Numerical Experiments - Robustness

• Robustness:
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CIFAR,

sign-flipping
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EMNIST,

Gaussian
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Synthetic(0,0),

data-poisoning
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• lp-proj is resistant to standard malicious attacks.

• Random projection helps alleviate the attacks applied in the original space, while the
Lp-norm helps eliminate outliers further.
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Numerical Experiments - Fairness

• Fairness:
CIFAR,

accuracy-fairness trade-off
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• lp-proj provides accurate and fair solutions
that are comparable to other SOTA methods.

• On CIFAR, lp-proj-1 achieves the highest
test accuracy of 79.22% with the lowest
variance of 0.0097 among all the competitors.
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Conclusion

• We propose a simple yet powerful personalized FL approach based on infimal convolution
and subspace projection.

• We present convergence results for smooth objectives with square regularizers.

• Theoretical analysis and numerical experiments show that our approach could promote
communication efficiency, robustness and performance fairness.

• Code Implementation: https://github.com/desternylin/perfed

Thanks for listening!
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