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Personalized Federated Learning

Objective: Train ML models from multiple data sources.
One local model is learnt for each user, depending on its past activity.

User datasets can be small, need to collaborate.
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Personalized Federated Learning

Setup

Let (D;)ieqi,np be NV data distributions on a space =,
and £ :R? x Z — R a str. convex and smooth loss
function. Our goal is to minimize the local objective
functions

Vi e [1,N], m[iRr; fi(z) = E¢,up, [, &)]

All agents receive a sample ; , ~ D; at iteration k > 0.

Agent ¢ may compute and communicate gradients
gF(x) = Vo l(z,£F) for any z e RY.

We focus on sample complexity.
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Personalized Federated Learning

Theoretical questions
How fast can we train our models?
How does it depend on the data distributions?

How to encode data dissimilarity?
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Personalized Federated Learning

Theoretical questions
How fast can we train our models?
How does it depend on the data distributions?

How to encode data dissimilarity?

Our contributions
Lower and upper bounds on the optimal sample complexity

IPMs can capture the data dissimilarity w.r.t. the optimization objective.

Gradient filtering approaches are optimal while communication efficient!
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Personalized Federated Learning

How to encode data dissimilarity in an optimization context?

Definition (Integral Probability Metrics, Muller, 1997)

For H a set of functions from = to R? and D, D’ two probability distributions on =, let
du(D,D') = sup [E [a(¢) — h(&)]|
heH

where £ ~ D and £ ~ D’. dy is a pseudo-distance on the set of probability measures on Z.

M. Even, L. Massoulié, K.Scaman Neurips 2022 5/11



Personalized Federated Learning

How to encode data dissimilarity in an optimization context?
Definition (Integral Probability Metrics, Muller, 1997)
For H a set of functions from = to R? and D, D’ two probability distributions on Z, let
du(D,D') = sup [E [a(¢) — h(&)]|
heH
where £ ~ D and £ ~ D’. dy is a pseudo-distance on the set of probability measures on Z.

Intuition

Contains many standard distances for distributions, such as the Wasserstein (or earth
mover's) distance, total variation, or maximum mean discrepancies.

Measures how much a function class can distinguish the two distributions.
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Personalized Federated Learning

Application to model training and optimization
Most optimization algorithms rely on gradients to perform training.
We want to measure how much gradients see the two distributions as different.
We can take the function class # as our knowledge on the gradients V_/(z,¢&)!

For example, for a quadratic models, the gradient is linear.

Assumption (Distribution-based dissimilarities)
Let H be such that, Vi = 1,..., N, and x7 a minimizer of f;, we have

(€2 Vol(z], ) eH

Moreover, there exists (b;j)1<ij<n such that, ¥(i,7) € [1, N]?, d(D;, D;) < bjj.
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Personalized Federated Learning

Lower bound on the sample complexity
Let (bs;)q; fixed non negative weights, € > 0 target precision, and i € [1, N] fixed.
There exists “difficult” instantiations of our problem based on distributions Dy, ..., Dy

that verify the dissimilarity assumption for weights (b;;), such that any “reasonable
algorithm™ that outputs a model x; for user ¢ using K. samples per agent, must verify:

Kg?L

N (0%)”

where C' is a constant that depends on the variance of local gradients noise and functions
regularity assumptions, and J\ff(bz) is the number of agents j that verify bfj <e
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Personalized Federated Learning

The All-for-all algorithm

Let (W;;)1<ij<n be a n x n matrix with non negative entries and > 0. Consider the
iterates generated with zF*1 = 2% — nWgF ie.,

N
2R :L“f —n Z Wijvxe(xé?’é?)

)
J=1

— Optimal collaboration speedup in average amongst clients, provided that 7, IV;;
tuned with b;; from the IPM-based data-dissimilarity assumptions.
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Personalized Federated Learning

The estimation dy (D;, D;) based on S samples of each local distributions can be done up to
a statistical precision that depends on the complexity of the function space H: 1/+/S for
finite-dimensional H and some MMDs, 1/S%/? for Wassertein distances, etc.

Case of quadratic linear regression

~

For a number S of samples (&;);c[n),se[s], use the following estimates i;, b;; and weights
Wi = Xij in the All-for-all algorithm:

Lz <u)

s
o1 > A S
Mi=§Z§¢,S7 bij =i — il Aj=y———
s=1 Z£=1 ]lﬂgfzguﬂ

= Still optimal collaboration speedup under structural assumptions on the agents.
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Personalized Federated Learning

Conclusion

Communication to neighboring agents w.r.t. dy(D;, D;) is sufficient, with a
neighorhood radius that decreases with the desired precision €.

Best speedup proportional to the number of neighbors N7 (b?).

This speedup can be achieved with limited communication and local storage with the
All-for-all algorithm.

In this setup, no asymptotic speedup is possible when all local distributions D; differ
(when & < min;;j dy(D;, D;), we have NF(b?) = 1).

For more details

Come at our poster and read our paper!

M. Even, L. Massoulié, K.Scaman Neurips 2022 10/11



Thank you for your attention!
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