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Objective: Handling malicious pairwise votes while ranking objects

® Rank aggregation from pairwise comparisons is a fundamental task in a wide
spectrum of learning and social contexts such as social choice, web search, and
recommendation systems.
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Objective: Handling malicious pairwise votes while ranking objects

® Rank aggregation from pairwise comparisons is a fundamental task in a wide
spectrum of learning and social contexts such as social choice, web search, and

recommendation systems.

® There has been a lot of work on ranking with the BTL Model.

® n objects that are to be compared and each has a positive weight (7).
® When a voter is asked a query for a pair, the voter claims i/ is better than j with

probability 7;/(7; 4+ 7;) independently at random.
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Objective: Handling malicious pairwise votes while ranking objects

® Rank aggregation from pairwise comparisons is a fundamental task in a wide
spectrum of learning and social contexts such as social choice, web search, and
recommendation systems.

® There has been a lot of work on ranking with the BTL Model.

® n objects that are to be compared and each has a positive weight (7).
® When a voter is asked a query for a pair, the voter claims i/ is better than j with
probability 7;/(7; 4+ 7;) independently at random.

® Generally, in crowd-sourced settings, voters differ significantly from each other.
Some of the voters may be spammers or even direct competitors of the entity
ranking the objects, leading to data poisoning.
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Byzantine Voters in the BTL Model
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® Predicted Weight

We assume that the pairs to be compared are determined by an Erdds-Rényi

comparison graph G(n,p) = (V, E) with atmost k comparisons per pair.
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Byzantine Voters in the BTL Model
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We consider a split in the voter population into K — F good and F Byzantine voters.

m Predicted Weight

The algorithm is needed to fix the pair to voter mapping before the votes are collected.
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Byzantine Voters in the BTL Model
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The Byzantine voters can vote however they wish. We assume that the central
adversary knows the BTL weights, the good voter's votes, the algorithm, and G(n, p).

® Predicted Weight
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Negative Result: The Failure of Rank-Centrality

We show that Rank-Centrality will get a constant relative L, error with high probability.

We initially try to motivate the need for a robust ranking algorithm by showing that
even a simple strategy from a Byzantine adversary will lead to an unsuitable ranking.
Theorem (Informal)

There exists a strategy that the Byzantine voters can use such that the
Rank-Centrality algorithm outputs a distribution 7 such that with high probability

lm — 7| (F)
17| K

Remark. A ©(1)-error algorithm is asymptotically equivalent to an algorithm that just

outputs the same ranking regardless or the query responses. .



Positive Result: FBSR Algorithm converges in a Byzantine Minority
The FBSR Algorithm achieves a fairly good ranking when F < K/2 in O(n?) time.

® The FBSR algorithm relies on asking multiple voters multiple queries and based
on the collective response decides whether a voter is acting suspiciously or
whether it is plausible that the voter might be a good voter.

® Based on the votes, we eliminate voters who are likely to be Byzantine. The FBSR
algorithm ensures that a constant fraction of good voters remain and that if any
Byzantine voters remain then these voters have votes similar to good voters.

FBSR Convergence when good voters have a majority:

||7T:—7"T||€O . Iogn’ log log n
|7 || k log n
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Negative Result: Impossibility when Byzantine Majority

There is no algorithm that can generate a satisfactory ranking when F > K /2

Theorem

If F > K /2, then no algorithm can for all weights (7 ), output weights (7* ) such that

|l — 7|
— = = f(n)
17

with probability > 1/2, where f(n) is a function that converges to 0 as n goes to co.

Remark. This impossibility consequently shows us that the FBSR algorithm is
optimal in terms of tolerance towards the Byzantine fraction (F/K).
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