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A Concrete Example

Faulty bandits:
▶ Central agent repeatedly performing a decision-making task (e.g., daily)
▶ Sensors s1, . . . , sK communicating daily with the agent
▶ Every day, agent sends a measurement request to some sensor si

▶ Communication with si fails independently w.p. 1 − εi

▶ If the request is accepted, si sends back a measurement

1 2 . . . K

ε1 ε2 εK
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Feedback Graph

Finite set of actions V = {1, . . . , K}.

A directed graph G = (V, E) over actions determines the feedback structure.

1

2

3

At any time t, the choice It ∈ V allows to observe actions in Nout
G (It) = {i ∈ V : (It, i) ∈ E}.
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Online Learning with Stochastic Feedback Graphs
At each round t = 1, . . . , T :
▶ learner plays action It ∼ πt

▶ environment generates Gt = (V, Et) ∼ G
▶ learner incurs loss ℓt(It) ∈ [0, 1] and observes {ℓt(i) : i ∈ Nout

Gt
(It)}

▶ learner updates πt 7→ πt+1

1

G

2
p(1, 1)

p(2, 2) = 0

p(1, 2)

p(2, 1)

=⇒ 2

Goal: minimize regret

RT = max
k∈V

E
[

T∑
t=1

(ℓt(It) − ℓt(k))
]
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Online Learning with Feedback Graphs

Families of (deterministic) feedback graphs:

▶ Strongly observable: all actions or
Regret: Õ(

√
αT ) where α is the independence number.

▶ Weakly observable: all actions observed but not strongly observable.
Regret: Õ(δ1/3T 2/3) where δ is the weak domination number.

▶ Non-observable: at least an action not observed.
Regret: Ω(T ).
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Thresholding and Support

Consider a stochastic feedback graph G = {p(i, j) : i, j ∈ V }.

Thresholded stochastic feedback graph Gε = {p(i, j)I{p(i,j)≥ε} : i, j ∈ V }

G

=⇒

Gε

The support of G is supp(G) = G = (V, E) where E = {(i, j) ∈ V × V : p(i, j) > 0}.
Note: all “deterministic” (graph-theoretical) notions may extend to G via supp(G).

5 / 10



Thresholding and Support

Consider a stochastic feedback graph G = {p(i, j) : i, j ∈ V }.

Thresholded stochastic feedback graph Gε = {p(i, j)I{p(i,j)≥ε} : i, j ∈ V }

G

=⇒

Gε

The support of G is supp(G) = G = (V, E) where E = {(i, j) ∈ V × V : p(i, j) > 0}.
Note: all “deterministic” (graph-theoretical) notions may extend to G via supp(G).

5 / 10



EdgeCatcher: From Stochastic to Deterministic

Let A be a learning algorithm for OL with deterministic feedback graph.

Initial round-robin to learn optimal threshold ε∗ and a “good estimate” Ĝ for G.

Blocks reduction: given threshold ε and Ĝ

B1

ĉ1

B2

ĉ2

. . . BN

ĉN

T

∆ ∆ ∆

Meta-instance for A with graph supp(Ĝε) and losses ĉ1, . . . , ĉN .
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ĉ2

. . . BN

ĉN
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EdgeCatcher: Regret Bound

The blocks reduction, given ε and Ĝ, achieves

RT ≤ ∆RA
N (supp(Ĝε)) + ∆

Setting ∆ = Θ( 1
ε∗ ln(KT )), EdgeCatcher achieves

RT = Õ

(
min

{
min

ε

√
(α(Gε)/ε)T , min

ε
(δ(Gε)/ε)1/3T 2/3

})
Nearly minimax-optimal in T , ε, and graph parameters.
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otcG: Be Optimistic If You Can, Commit If You Must
Assumption: observe Gt at the end of round t in addition to losses.

We design an algorithm based on Exp3.G using new importance-weighted estimates ℓ̃t(i)
with upper confidence bounds p̂t(j, i) for p(j, i):

ℓ̃t(i) =
I{It→i in both Gt and Ĝt}∑

j
Ĝt−→i

πt(j)p̂t(j, i) ℓt(i)

By an empirical Bernstein’s bound,

p̂t(j, i) = p̃t(j, i) + C1

√
ln(KT )

t − 1 p̃t(j, i) + C2
ln(KT )

t − 1

where p̃t(j, i) = 1
t−1

∑t−1
s=1 I{(j,i)∈Es}.
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otcG: Regret Bound

Optimistically assume strong observability, then commit to weak observability if better.

Regret:

RT = Õ

(
min

{
min

ε

√
αw(Gε)T , min

ε
{δw(Gε)1/3T 2/3 +

√
σ(Gε)T}

})

αw and δw are improved, weighted versions of α and δ containing the dependency on edge
probabilities.
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Conclusions and Future Work
▶ Our lower bounds show that EdgeCatcher and otcG are nearly minimax-optimal
▶ otcG improves with tighter graph-theoretical parameters

Questions:
▶ Can we use blocks of variable size in EdgeCatcher?
▶ Can we prove instance-dependent lower bounds matching the regret of otcG?
▶ Can we remove the need to observe the realized graph Gt ∼ G in otcG?
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