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A Concrete Example

Faulty bandits:
> Central agent repeatedly performing a decision-making task (e.g., daily)
» Sensors s1,...,SKk communicating daily with the agent
> Every day, agent sends a measurement request to some sensor s;
» Communication with s; fails independently w.p. 1 —¢;
>

If the request is accepted, s; sends back a measurement
661 @62 égi{
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Feedback Graph

Finite set of actions V = {1,..., K}.

A directed graph G = (V, E)) over actions determines the feedback structure.
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Feedback Graph

Finite set of actions V = {1,..., K}.

A directed graph G = (V, E') over actions determines the feedback structure.

~
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At any time ¢, the choice I; € V allows to observe actions in N2¥(I;) = {i € V : (I;,i) € E}.
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Online Learning with Stochastic Feedback Graphs
At eachroundt=1,...,T":
» learner plays action I; ~ m;
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Online Learning with Stochastic Feedback Graphs
At eachroundt=1,...,T":
P learner plays action I; ~ m;
» environment generates Gy = (V, E;) ~ G
» learner incurs loss /;(1;) € [0, 1] and observes {/;(i) : i € N&"(I;)}
» learner updates m; — Ty

g p(1’2) Gt ~ g
—
LSOT T - el O
#(2,1) p(2,2) =0

Goal: minimize regret
T
RT = max [Z gt It — Et ]
=1
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Online Learning with Feedback Graphs

Families of (deterministic) feedback graphs:

v
» Strongly observable: all actions 8 or :0:

Regret: O(v/aT) where « is the independence number.
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Online Learning with Feedback Graphs

Families of (deterministic) feedback graphs:

v
» Strongly observable: all actions 8 or :0:

Regret: O(v/aT) where « is the independence number.

> Weakly observable: all actions observed but not strongly observable.

Regret: O(6'/3T2/3) where § is the weak domination number.

» Non-observable: at least an action not observed.
Regret: Q(T).
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Thresholding and Support

Consider a stochastic feedback graph G = {p(i,7) : i,j € V}.

Thresholded stochastic feedback graph G. = {p(i, j)I{,( jy>c} 1 4,5 € V'}

g
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Thresholding and Support

Consider a stochastic feedback graph G = {p(i,7) : i,j € V}.

Thresholded stochastic feedback graph G. = {p(i, j)I{,( jy>c} 1 4,5 € V'}

g

N a S

The support of G is supp(G) = G = (V, E) where E = {(i,j) € V x V : p(i,5) > 0}.

Note: all “deterministic” (graph-theoretical) notions may extend to G via supp(G).
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EDGECATCHER: From Stochastic to Deterministic

Let A be a learning algorithm for OL with deterministic feedback graph.

Initial round-robin to learn optimal threshold £* and a “good estimate” Q for G.
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EDGECATCHER: From Stochastic to Deterministic

Let A be a learning algorithm for OL with deterministic feedback graph.
Initial round-robin to learn optimal threshold £* and a “good estimate” Q for G.

Blocks reduction: given threshold ¢ and G

¢1 Co CN
B | By By || T
A A A
Meta-instance for A with graph supp(,C’;E) and losses ¢1,...,CN.
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EDGECATCHER: Regret Bound

The blocks reduction, given € and G, achieves

Ry < ARy (supp(G.)) + A

Setting A = ©(Z4 In(KT)), EDGECATCHER achieves

Ry =0 (min{main \(a(Ge)/e)T, main(é(ge)/s)l/:sTQ/g})

Nearly minimax-optimal in 7', €, and graph parameters.
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oTCG: Be Optimistic If You Can, Commit If You Must

Assumption: observe G; at the end of round ¢ in addition to losses.

We design an algorithm based on EXP3.G using new importance-weighted estimates gt(z)
with upper confidence bounds p.(j,14) for p(7,14):

7 (Z) . H{It—n' in both G4 and Gt}

t — ~N ~ 7 - -

> o, m(5)Pe(d,9)
j—i

€y(i)
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oTCG: Be Optimistic If You Can, Commit If You Must

Assumption: observe G; at the end of round ¢ in addition to losses.

We design an algorithm based on EXP3.G using new importance-weighted estimates gt(z)
with upper confidence bounds p.(j,14) for p(7,14):

. {It—n' in both G4 and Gt}
b(i) =

Z o m(0)Pe(5: ) &0)

By an empirical Bernstein's bound,

hl(KT)ﬁt(ja i) + C2 n(KT)

L o
Be(5,1) = 2o, 9) + O\ [ = — 2]

where §;(j, i) = 75 Y- H{(J% )EES}
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0TCG: Regret Bound

Optimistically assume strong observability, then commit to weak observability if better.

Regret:
Ry =0 (min{msin v aw(Ge)T, mgn{éw(g€)1/3T2/3 + \/G(QE)T}}>

ay and 6y, are improved, weighted versions of a and § containing the dependency on edge
probabilities.
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Conclusions and Future Work

» Our lower bounds show that EDGECATCHER and OTCG are nearly minimax-optimal
» oTCcG improves with tighter graph-theoretical parameters
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