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Streaming principal component analysis when the stochastic data
-generating model is subject to perturbations.

Motivation

Principal component analysis (PCA) is one of the most extensively studied methods for
obtaining the low-dimensional representation of observed data. Streaming PCA focuses on
the online PCA algorithms with data-generating model.

Most algorithms assume that all the observations belong to the same low-dimensional
space. However, this situation is unlikely when the unknown/unexplored alterations corrupt
a system's observations. For instance:

» Typical data attacks on power grids can significantly change the estimated covariance
matrix of the data observed from sensors.

» PCA can be used to explain stock returns in terms of macroeconomic factors, which
varies with the time.

In all these scenarios, the underlying data-generating model changes with time, and
the decisions are based on identifying the changed model.

Non-Stationary Environment

Time-Variant Spiked Covariance Model: We consider the time-dependent environment:

X, ~ N (0, AA! + a2Ipo)

where At e RP* can vary with time. Standard spiked covariance model[1] indicates the

case A, = A.
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On the non-stationary streaming PCA environment, we provide :
1. Fundamental minimax lower bound

- For T=0O(I"~??), the minimax error decreases as O(p'*T~1?).

- On the other hand, for T=Q(I"~?/?), the error stagnates to O(p'*I""?), and does
not decrease upon collecting more observations.

2. Analysis for two streaming PCA algorithms
- There exists regime for the best learning parameters.

- Noisy power method is rate optimal under mild conditions.

- We validate some findings via numerical experiments.

Task: Algorithm ¢ should recover top-k principal components of covariance matrix at the

final time step 7.

Temporal Uncertainty Set: We only allow the sequence of matrices AtAtT that lie in an

temporal uncertainty set defined as:

Tu,8) := { (A)_, : sAA))>6.[[AA] —A Al ||| <T}

Metric and Algorithm Optimality

Estimation Error: For streaming algorithm ¢ and the sampled data stream 2" = (Xt)thl ~

A = (Al‘)tT=1 €Tu(o,I), we consider the metric d(ran(A;), ¢ o), where d is the matrix 2-

norm between projectors.

Performance of Algorithm: For each streaming algorithm ¢, the maximum expected

error of ¢ is defined as #? := SUP /e Tus.r)E 2 ~er [d(ran(AT), qb%)] .

Fundamental Lower Bound: Fundamental minimax lower bound is the infimum over

maximum expected error Z* := inf R?.
ped

Rate Optimal Algorithm: Streaming algorithm ¢ is rate optimal if Z? < C-%* , where
C is a constant independent with T, 6, p, k,and I

1. Minimax Lower Bound

When & = (At)tT=1 belongs to the temporal uncertainty set Tu(o,I"), an algorithm designed to

recover the principal components of A from the observations cannot guarantee converges-to-
zero estimation error.

Theorem 1. Assume 6 > 1> 0and p > 2k + 1. Then:
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For standard streaming PCA problem (I'=0), the fundamental limit is expected @(1/\/7)
dependence [2,3].

On the other hand, for the case (I'>0), only the last 7. observations are essential for
estimation since the information quickly becomes stale in a dynamic environment.

(T, = T18)"" (po(c® + 86)15%) ")

2. Algorithm Analysis

In this section, ./ = 2(kd + po?)(1 + O(log(pT?)/T)) and 7" = 2 (5 + ¢7).

Update Rule of Noisy Power Method [4]:

U(¢) < Gram-Schmidt (% 3 s 0@ - 1))

Since only the last observations are essential, it becomes imperative to find the block size B
that can be used to recover the principal components.

Theorem 2. Assume that § > 0.716%and I' = O(5°/(7 log(2pT?))).
For B = O(7 3 1og(2pT*)*T"=%?), we have:
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If T = Q(max(7,,5(po>)™"), I = QP + = 2WP)§%(po?)"), and 5,(A A]) = O(5).
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Noisy power method [4] becomes order-wise identical to the fundamental limit established in
the Theorem 1, when p02 dominates k0. This regime is the case of noisy practical situations.

2. Algorithm Analysis (Continues)

Update Rule of Oja’s algorithm [5]:
0() — Gram-Schmidt ((I +oxxT) - U — 1))

We establish similar analysis for the Oja's algorithm using virtual block size BC: [(:_1] . The

regime for optimal inverse learning rate C‘l becomes:

Z:—l — @(%2/3 10g(pT2)1/3F_2/3).
Unlike the noisy power method, the upper bound for Oja’s algorithm @(p%) is not rate
optimal (See Theorem 3 of the paper for details). This theoretical gap occurs because the

proof uses different (multiplicative) matrix concentration inequalities [6], different from the
matrix Bernstein inequality used for noisy power method analysis.

Experiments

We verify the below findings via experiments:

. Existence of the optimal regime for block size B and the learning rate (.

e dependencies of that optimal learning parameters B and C‘l.

- Svynthetic Experiments
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- S&P500 Return Covariance Analysis

Estimating S&P500 Daily Return Covariance
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