
When  belongs to the temporal uncertainty set , an algorithm designed to 

recover the principal components of  from the observations cannot guarantee converges-to-
zero estimation error.


Theorem 1. Assume  and . Then:





For standard streaming PCA problem ( ), the fundamental limit is expected  
dependence [2,3]. 


On the other hand, for the case ( ), only the last  observations are essential for 
estimation since the information quickly becomes stale in a dynamic environment. 
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In this section,  and  .


Update Rule of Noisy Power Method [4]: 





Since only the last observations are essential, it becomes imperative to find the block size  
that can be used to recover the principal components.


Theorem 2. Assume that and .

For , we have:


 


If , , and 


Noisy power method [4] becomes order-wise identical to the fundamental limit established in 
the Theorem 1, when  dominates . This regime is the case of noisy practical situations.
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Robust Streaming PCA

On the non-stationary streaming PCA environment, we provide :


1. Fundamental minimax lower bound


- For , the minimax error decreases as . 


- On the other hand, for the error stagnates to , and does 

not decrease upon collecting more observations.


2. Analysis for two streaming PCA algorithms 


- There exists regime for the best learning parameters.


- Noisy power method is rate optimal under mild conditions.


- We validate some findings via numerical experiments.

T=𝒪(Γ−2/3) 𝒪(p1/2T−1/2)
T=Ω(Γ−2/3), 𝒪(p1/3Γ1/3)
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Time-Variant Spiked Covariance Model: We consider the time-dependent environment:


 


where  can vary with time. Standard spiked covariance model[1] indicates the 

case .


Task: Algorithm  should recover top-k principal components of covariance matrix at the 

final time step .


Temporal Uncertainty Set: We only allow the sequence of matrices  that lie in an 

temporal uncertainty set defined as:
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TL; DR
Streaming principal component analysis when the stochastic data 
-generating model is subject to perturbations.
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2. Algorithm Analysis

Metric and Algorithm Optimality
Estimation Error: For streaming algorithm  and the sampled data stream  

, we consider the metric , where  is the matrix 2-

norm between projectors.


Performance of Algorithm: For each streaming algorithm , the maximum expected 

error of  is defined as .


Fundamental Lower Bound: Fundamental minimax lower bound is the infimum over 

maximum expected error .


Rate Optimal Algorithm: Streaming algorithm  is rate optimal if  , where 

 is a constant independent with .
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Update Rule of Oja’s algorithm [5]: 


 


We establish similar analysis for the Oja's algorithm using virtual block size . The 

regime for optimal inverse learning rate  becomes: 

.


Unlike the noisy power method, the upper bound for Oja’s algorithm  is not rate 
optimal (See Theorem 3 of the paper for details). This theoretical gap occurs because the 
proof uses different (multiplicative) matrix concentration inequalities [6], different from the 
matrix Bernstein inequality used for noisy power method analysis. 

Û(t) ← Gram-Schmidt ((I + ζxtx⊤
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𝒪(p2/3)Principal component analysis (PCA) is one of the most extensively studied methods for 

obtaining the low-dimensional representation of observed data. Streaming PCA focuses on 
the online PCA algorithms with data-generating model. 


Most algorithms assume that all the observations belong to the same low-dimensional 
space. However, this situation is unlikely when the unknown/unexplored alterations corrupt 
a system's observations. For instance:


• Typical data attacks on power grids can significantly change the estimated covariance 
matrix of the data observed from sensors. 


• PCA can be used to explain stock returns in terms of macroeconomic factors, which 
varies with the time.


In all these scenarios, the underlying data-generating model changes with time, and 
the decisions are based on identifying the changed model.

We verify the below findings via experiments:

• Existence of the optimal regime for block size  and the learning rate  .


•  dependencies of that optimal learning parameters  and .


-  Synthetic Experiments


- S&P500 Return Covariance Analysis
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