
When  belongs to the temporal uncertainty set , an algorithm designed to 

recover the principal components of  from the observations cannot guarantee converges-to-
zero estimation error. 

Theorem 1. Assume  and . Then: 

 

For standard streaming PCA problem ( ), the fundamental limit is expected  
dependence [2,3].  

On the other hand, for the case ( ), only the last  observations are essential for 
estimation since the information quickly becomes stale in a dynamic environment. 
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In this section,  and  . 

Update Rule of Noisy Power Method [4]:  

 

Since only the last observations are essential, it becomes imperative to find the block size  
that can be used to recover the principal components. 

Theorem 2. Assume that and . 
For , we have: 

  

If , , and  

Noisy power method [4] becomes order-wise identical to the fundamental limit established in 
the Theorem 1, when  dominates . This regime is the case of noisy practical situations.
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Robust Streaming PCA

On the non-stationary streaming PCA environment, we provide : 

1. Fundamental minimax lower bound 

- For , the minimax error decreases as .  

- On the other hand, for the error stagnates to , and does 

not decrease upon collecting more observations. 

2. Analysis for two streaming PCA algorithms  

- There exists regime for the best learning parameters. 

- Noisy power method is rate optimal under mild conditions. 

- We validate some findings via numerical experiments.
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Non-Stationary Environment
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Time-Variant Spiked Covariance Model: We consider the time-dependent environment: 

  

where  can vary with time. Standard spiked covariance model[1] indicates the 

case . 

Task: Algorithm  should recover top-k principal components of covariance matrix at the 

final time step . 

Temporal Uncertainty Set: We only allow the sequence of matrices  that lie in an 

temporal uncertainty set defined as: 
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TL; DR
Streaming principal component analysis when the stochastic data 
-generating model is subject to perturbations.
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2. Algorithm Analysis

Metric and Algorithm Optimality
Estimation Error: For streaming algorithm  and the sampled data stream  

, we consider the metric , where  is the matrix 2-

norm between projectors. 

Performance of Algorithm: For each streaming algorithm , the maximum expected 

error of  is defined as . 

Fundamental Lower Bound: Fundamental minimax lower bound is the infimum over 

maximum expected error . 

Rate Optimal Algorithm: Streaming algorithm  is rate optimal if  , where 

 is a constant independent with .
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Update Rule of Oja’s algorithm [5]:  

  

We establish similar analysis for the Oja's algorithm using virtual block size . The 

regime for optimal inverse learning rate  becomes:  
. 

Unlike the noisy power method, the upper bound for Oja’s algorithm  is not rate 
optimal (See Theorem 3 of the paper for details). This theoretical gap occurs because the 
proof uses different (multiplicative) matrix concentration inequalities [6], different from the 
matrix Bernstein inequality used for noisy power method analysis. 
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𝒪(p2/3)Principal component analysis (PCA) is one of the most extensively studied methods for 

obtaining the low-dimensional representation of observed data. Streaming PCA focuses on 
the online PCA algorithms with data-generating model.  

Most algorithms assume that all the observations belong to the same low-dimensional 
space. However, this situation is unlikely when the unknown/unexplored alterations corrupt 
a system's observations. For instance: 

• Typical data attacks on power grids can significantly change the estimated covariance 
matrix of the data observed from sensors.  

• PCA can be used to explain stock returns in terms of macroeconomic factors, which 
varies with the time. 

In all these scenarios, the underlying data-generating model changes with time, and 
the decisions are based on identifying the changed model.

We verify the below findings via experiments: 
• Existence of the optimal regime for block size  and the learning rate  . 

•  dependencies of that optimal learning parameters  and . 

-  Synthetic Experiments 

- S&P500 Return Covariance Analysis 
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