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What’s the preference over these  items?n

A company designs


A Motivating Example



Ask for top-k feedback

“Ranked Choices”



What is the Mallows Model?

λ(π) =
qdK(π*,π)

∑π′￼

qdK(π*,π′￼)

: Central Ranking[1]π*

Probability distribution of rankings/permutations

:    Dispersion parameterq

[1]  Assume .π* = e

Kendall’s Tau Distance[1]: 


dK(π) =
n−1

∑
i=1

n

∑
j=i+1

I{π(i) > π( j)}



For top-1 feedback (choice data), Désir, Goyal, Jagabathula and Segevd (Operations Research, 2021)[1] use 
mixture of Mallows model


Choice probabilities can be evaluated in .


Estimation is still hard, and they propose Mallows Smoothing to conduct estimation.


Numerically show better prediction power than sparse ranking-based choice model.

O(n2 log n)

Apply Mallows model to ranked choices?

[1] Désir, A., Goyal, V., Jagabathula, S., & Segev, D. (2021). Mallows-smoothed distribution over rankings approach for modeling choice. Operations Research, 69(4), 
1206-1227.

Theorem    Even if all display sets S with |S|>2 are displayed infinite times, the estimator from 
the Mallows Smoothing heuristic is not consistent. 



We develop a novel Mallows-type model and


Characterize simple closed-form (ranked) choice probabilities,


Learn the parameters with guaranteed consistency relatively easy,


Learn in a mixture setting by Expectation Maximization (EM) algorithm,


Efficiently sample out a top-k list. 

is easy to do sampling.

Main Contributions



A new distance function: Reverse Major Index (RMJ)[1]





Adjacent disagreement

Linear decreasing weight

dR(π) =
n−1

∑
i=1

I{π(i) > π(i + 1)} ⋅ (n − i)

(4,2,1,3)

Distance Function RMJ Kendall’s Tau

Number of Disagreement 2 adjacent 4 pairwise

Disagreements (4,2), (2,1) (4,2), (4,1), (4,3), (2,1)

Weights 3,2 1,1,1,1

Distance 3+2=5 1+1+1+1=4

Our RMJ-based Ranking Model 

[1]  Assume .π* = e



Theorem   Given a display set  be such that . Then 





Relative ranking within display set matters.


Choice probabilities decay exponentially fast.


S = {x1, x2, …, xM} x1 < x2 < ⋯ < xM

ℙ(xi |S) =
qi−1

1 + q + … + qM−1

Simple Closed-form Choice Probability 



Given historical data 

MLE formulation: 





where 





Intuitively, a positive  is an indication that item i should be preferred to item j.


HT = (S1, x1, …, ST, xT)

T

∑
t=1

log
1 − q

1 − q St

+ log q ∑
(i,j):i≠j

I {j ≻π i} ⋅ wij

wij :=
T

∑
t=1

I {{i, j} ⊆ St  and  xt = i}
wij − wji

Parameter Learning

Integer Programming Reformulation: Well-studied weighted feedback arc set problem on 
tournaments.

Given  and set ,  MLE is a concave function of .π α = − log q α

Consistency



Theorem   Given a display set  and a   such that , we have

where ,  .

S πk R(πk) ⊆ S

ℙ(πk |S) = qdS(πk)+LS(πk) ⋅ ψ( |S | − k, q)
ψ( |S | , q)

dS(πk) :=
k−1

∑
i=1

I{πk(i) > πk(i + 1)} ⋅ ( |S | − i) LS(πk) := |{x ∈ Rc(πk) ∩ S : x < πk(k)} |

Ranked Choice Probability 



Given historical data , where .
HT = (S1, π1
k , …, ST, πT

k ) πt
k = (xt

1, …, xt
k)

Learning on Ranked Choices

Theorem   The MLE for the central ranking can be obtained from the same 
integer program with a generalized definition of  below

 





wij

wij =
T

∑
t=1

[
k−1

∑
h=1

( |St | − h) ⋅ I{xt
h = i, xt

h+1 = j} + I{xt
k = i} ⋅ I{{i, j} ⊆ St\{xt

1, …, xt
k−1}}]



Nice Properties
 Lemma 1   (Probability distribution of top-k rankings, )   
 





k ≥ 1

λ(πk) = qd(πk)+L(πk) ⋅ ψ(n − k, q)
ψ(n, q)

 Lemma 2   (Sampling of Next Position)

Given   such that , the conditional probability for the ( )-positioned item is 

 





where  

πk πk(k) = z k + 1

ℙ (πk+1 = πk ⊕ y ∣ πk) =
qh(y∣z)−1

1 + q + ⋯ + qn−k−1

h(y ∣ z) =
∑x∈Rc(πk)

𝕀{z < x ≤ y}  if y > z

n − k − ∑x∈Rc(πk)
𝕀{y < x < z}  if y < z

.



An example of 3 items, {1,2,3}.

Efficient Sampling: O(nk)

1 2 3Top-1 Ranking

1
1 + q + q2

q
1 + q + q2

q2

1 + q + q2

2 3 1 3 1 2Top-2 Ranking

1
1 + q

q
1 + q

q
1 + q

q
1 + q

1
1 + q

1
1 + q

3 2 3 1 2 1Top-3 Ranking

1 1 1 1 1 1

λ((1,2,3)) =
1

1 + q + q2
×

1
1 + q

× 1



Experiments

Experiment 1: Prediction Accuracy
Experiment 2: Robustness Check
Experiment 3: Efficient Estimation 



Two public ranking data sets about sushi preference[1]

5000 complete rankings over 10 kinds of sushi. 


5000 top-10 rankings over 100 kinds of sushi. 


Generate empirical ranked choice data from ranking data.

Public Data Sets

[1] Source: Toshihiro Kamishima, Sushi Data, downloaded from PrefLib.org 


https://www.preflib.org/


Compare with Mallows model and Plackett-Luce model. 

Fit into mixture models.


Experiment 1: Prediction on Top-1 Choice



The 10 Sushi data set. We conduct estimation on top-1, top-2 and top-3 ranked choices.

Compare with Borda Count1 and Simple Count2

Discrepancy: Average pairwise Kendall’ Tau distance


Setting 1:   Display Sets: {set with } (Balanced Display)size ≥ k

Experiment 2: Robustness Check on Top-k Choice 

1. Borda Count: the score of an item is linear decreasing with its rank. 


2. Simple Count: simply count the occurrences of each sushi in the top-k choice.


Setting 2:   Display Sets: { } (Unbalanced Display)[10], {7,9,10}



Training data is 5000 top-10 choices out of 100 types of sushi. 

We use LP relaxation to speed up the IP.

We bootstrap 10 times (each time drawing 10000 samples) and record the running 
times and optimality gaps[1].

Experiment 3: Efficiency When n is large

[1] Feng, Y., Caldentey, R., & Ryan, C. T. (2022). Robust learning of consumer preferences. Operations Research, 70(2), 918-962.




