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A Motivating Example

A company designs

What's the preference over these n items?



Ask for top-k feedback

Display Set: S, Choice: T},

"Ranked Choices”



What is the Mallows Model?

Probability distribution of rankings/permutations

qu(ﬂ*,ﬂ)

Sl e

qg: Dispersion parameter

r*: Central Ranking!] Kendall’s Tau Distancell:
n—1 n
d(m) = ), ), Ial) > n(j))
i=1 j=i+1

[1] Assume 7* = e.



Apply Mallows model to ranked choices?

2 For top-1 feedback (choice data), Désir, Goyal, Jagabathula and Segevd (Operations Research, 2021)'! use
mixture of Mallows model

» Choice probabilities can be evaluated in O(n”log n).
2 Estimation is still hard, and they propose Mallows Smoothing to conduct estimation.

2z Numerically show better prediction power than sparse ranking-based choice model.

(/ S S—— R R ——————— — — = e — e — — I — :—T

“ ‘Theorem Even if al display sets S with |S|>2 are displayed infinite times, the estimator from
the Mallows Smoothing heuristic is not consistent.

L - -

[1] Désir, A., Goyal, V., Jagabathula, S., & Segev, D. (2021). Mallows-smoothed distribution over rankings approach for modeling choice. Operations Research, 69(4),
1206-1227.



Main Contributions

> We develop a novel Mallows-type model and

> Characterize simple closed-form (ranked) choice probabilities,
> Learn the parameters with guaranteed consistency relatively easy,
> Learn in a mixture setting by Expectation Maximization (EM) algorithm,

> Efficiently sample out a top-k list.



Our RMJ-based Ranking Model

» A new distance function: Reverse Major Index (RMJ)!1]

n—1
de(m) = ) H{n(i) > a(i + 1)} - (n — i)
=1

» Adjacent disagreement

 Linear decreasing weight

Distance Function RMJ Kendall's Tau
Number of Disagreement 2 adjacent 4 pairwise
Disagreements (4,2),(2,1) (4,2),(4,1),(4,3),(2,1)
Weights 3,2 1,1,1,1
Distance 3+2=5 1+1+1+1=4

[1] Assume 7* = e.



Simple Closed-form Choice Probability

o |
‘ Theorem leen a display set S = {X]5 X5 +oes Xy be SUCh that neRE s Then

— = - S _ — E— e E—— —— — e — - —— = — . _ —_— — —

| i—1 |
P |S) =

S — _ e — e ———————————————————

» Relative ranking within display set matters.

» Choice probabilities decay exponentially tast.



Parameter Learning

> Given historical data H; = (S, Xy, ..., Sp» X7)

2 MLE formulation: 7
| min Z Wijxji
< 1 — (L.)):1#]
2 log | §
=1 I—Q‘St‘ xij+xji=1 VlSi,an

xij+xjr+xn-S2 VlSi,j,T'Sn i
x,;]- (S {0,1} V1l < l;] <n

where

Xij =1meansi > j.

T
» = Y I{{i.j} €S, and x, = i
=1

> Intuitively, a positive w; — w;; is an indication that item i should be preferred to item j.

Integer Programming Reformulation: Well-studied weighted feedback arc set problem on
tournaments.

? Given 7 and seta = — logg, MLE is a concave function of a.
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Ranked Choice Probability

—— — = _ - — — — . ———— R e — — — _—

Theorem Given a display set§ and a 7, such that R(xz,) C S, we have

( ‘ S‘ o ka Q)
| ) = dy(m)+Lg(m) , 121~ D
(m15) = q s(1S1.9)

k—1
where dy(m) := Y Hm(i) > m(i+ D} - (|S| =), Ly(m) := | {x ER(m) N S : x < m(K)} |.
=1




Learning on Ranked Choices

> Given historical data H; = (Sl,ﬂ'kl, s S ), where o= (X{,....X).

- — e _ = —

w Theorem The MLE for the central rankmg can be obtamed from the same

~integer program with a generalized definition of w;; below

I

Wy = Z [Z(\S\—h) I{xh—lxthl }+I{xk—l} I{{l]} CS\{xl,...,xlﬁ_l}}]

=1 ,
\_ e — _ i - I

——

___ __ ____
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Nice Properties

S— — e == = - L = P — —_ — —

:

Lemma 1 (Probability distribution of top-k rankings, k > 1)

l//(n o ka Q) k
ﬂ(”k) _ qd(ﬂk)+L(7Tk) . W

\ 7 ‘ | - e

Lemma 2 (Sampling of Next Position)
Given &, such that mi(k) = z, the conditional probability for the (kK + 1)-positioned item is ‘~

|
G121

P(]Z'k+1 = Dy | ﬂk) — 1+q+---+qn‘k‘1 l

erRc(ﬂk) {z<x <y} ify>z
|

where h(y | z) = . .
{n—k—erRc(nk)l]{y<x<z} ify<z |




Efficient Sampling: O(nk)

2 An example of 3 items, {1,2,3}.

Top-1 Ranking

Top-2 Ranking

Top-3 Ranking

A((1,2,3)) =

X
l+g+qg? 1+g¢



Experiments

» Experiment 1: Prediction Accuracy
» Experiment 2: Robustness Check

» Experiment 3: Efficient Estimation



Public Data Sets

» Two public ranking data sets about sushi preterencel’!

» 5000 complete rankings over 10 kinds of sushi.
» 5000 top-10 rankings over 100 kinds of sushi.

[1] Source: Toshihiro Kamishima, Sushi Data, downloaded from Preflib.org



https://www.preflib.org/

Experiment 1: Prediction on Top-1 Choice

» Compare with Mallows model and Plackett-Luce model.

2 Fit into mixture models.

Figure 1: Comparison of Explanation and Prediction Power for Top-1 choice
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(trained on three random display sets)

In each panel, the x-axis represents the number of clusters, and the y-axis represents the log-likelihood metric.



Experiment 2: Robustness Check on Top-k Choice

The 10 Sushi data set. We conduct estimation on top-1, top-2 and top-3 ranked choices.

Compare with Borda Count! and Simple Count?

Discrepancy: Average pairwise Kendall’ Tau distance

Setting 1: Display Sets: {set with size > k} (Balanced Display)

OAM Borda Count Simple Count
Top-3 (8,5,6,3,2,1 (83012049 7 (8,3,1,6,2,5,419,7,1
Top-2 (8,5,6,3,2,1 (8,3,5,6,1,2,4, (8,3,6,1,5,2,419,7,1
Top-1 (8,5,6,3,2,1 (8,5,6,3,2,1,4 (8,5,3,6,2,1,4)9.7.]
Discrepancy 0 4 4

> Setting 2: Display Sets: {[10], {7,9,10}} (Unbalanced Display)

OAM Borda Count Simple Count
Top-3 (8,5,3,2,6,1,49,7,1 (8,3,5,@2,1_,7,4,3_0) 9,7110,8,3,5,6,2,1,4)
Top-2 (8,5,6,3,2,1,419,7,1 (8,5@,3,2,2_,7,4,2_0) 8,10,5,6,3,2,1,4)
Top-1 (8,5,2,6,1,3,4/9,7,. (8,5]9,712,6,1,3,4,10) | (9,7)8,5,2,6,10,1,3,4)
Discrepancy 2.67 7.33 6

1. Borda Count: the score of an item is linear decreasing with its rank.
2. Simple Count: simply count the occurrences of each sushi in the top-k choice.




Experiment 3: Efficiency When n is large

» Training data is 5000 top-10 choices out of 100 types of sushi.
» We use LP relaxation to speed up the IP.

» We bootstrap 10 times (each time drawing 10000 samples) and record the running
times and optimality gaps!'l.

Model Building Time (min) Model Solving Time (min) Optimality Gap
Average 21.10 4.20 1.47%
Max 21.19 4.50 1.79%

[1] Feng, Y., Caldentey, R., & Ryan, C. T.(2022). Robust learning of consumer preferences. Operations Research, 70(2), 218-962.
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Abstract

We consider a preference learning setting where every participant chooses an
ordered list of £ most preferred items among a displayed set of candidates. (The
set can be different for every participant.) We identify a distance-based ranking
model for the population’s preferences and their (ranked) choice behavior. The
ranking model resembles the Mallows model but uses a new distance function
called Reverse Major Index (RMJ). We find that despite the need to sum over all
permutations, the RMJ-based ranking distribution aggregates into (ranked) choice
probabilities with simple closed-form expression. We develop effective methods to
estimate the model parameters and showcase their generalization power using real
data, especially when there 1s a limited variety of display sets.



