Ordered Subgraph Aggregation Networks

Chendi Qian **Gaurav Rattan** Floris Geerts Christopher Morris Mathias Niepert

TU Munich, RWTH Aachen University, University of Antwerp, RWTH Aachen University, University of Stuttgart

NeurIPS 2022

GNNs: Expressivity vs Scalability

- [1] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. Eric Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. AAAI 2019.
- [2] K. Xu et. al. How Powerful are Graph Neural Networks? ICLR 2019

GNNs: Expressivity vs Scalability

GNN Models

- Sparsity Awareness
- Substructure Counting
- Positional Encoding
- Random Initialization
- **.** . .
- SubgraphEnhancement

- [1] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. Eric Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. AAAI 2019.
- [2] K. Xu et. al. How Powerful are Graph Neural Networks? ICLR 2019

Subgraph-Enhanced GNNs

Methodology

Enrich the graph representation using representations of such derived graphs ...

Multiple Avatars

- Reconstruction GNNs¹
- ► ESAN²
- ID-Aware GNNs
- Nested GNNs
- **.** . . .
- [1] L. Cotta and C. Morris and B. Ribeiro. Reconstruction for Powerful Graph Representations. NeurIPS 2021
- [2] B. Bevilacqua et. al. Equivariant Subgraph Aggregation Networks. ICLR 2022

Limitations of Subgraph Enhancement

Limitations of Subgraph Enhancement

 $I-MLE^1$

 $I\text{-}MLE^1$

 $I-MLE^1$

 $I-MLE^1$

 $I-MLE^1$

For $k \ge 1$, k-OSAN form a hierarchy of GNNs with strictly increasing expressive power.

For every $k \ge 1$, k-OSAN is strictly less powerful than (k + 1)-WL.

The k-OSAN forms a unified framework for capturing known subgraph-enhanced GNNs.

Data-driven sampling of subgraphs leads to better generalization than random sampling.

The I-MLE framework can improve the scalability of subgraph-enhanced GNNs.