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Global optimisation problems

Global optimisation:

x∗ ∈ argmin
x∈S

f(x)

• f is a “black box”.

↪→ only observable via noisy and expensive evaluations

Applications:

• Hyper-parameter tuning (e.g., Optuna, HyperOpt, etc.)

• Neural architecture search

• Robotic exploration, chemical design, environmental monitoring, etc.
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Bayesian optimisation: the basics

• Model f as a random variable

↪→ e.g., f ∼ GP(0, k) (Gaussian process)

• Condition the model on past data Dt−1 := {xi, yi}t−1i=1

• Optimise an acquisition function a(x|Dt−1) to collect new data xt, yt:
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Repeat for t ∈ {1, . . . , T}
3



BORE: Bayesian optimisation by density-ratio estimation (Tiao et al., 2021)

Expected improvement as a density ratio

Given `(x) := p(x|y ≤ τ) and g(x) := p(x|y > τ), Tiao et al. (2021) showed that:

aEI(x|Dt−1) ∝
`(x)

γ`(x) + (1− γ)g(x)
= γ−1π(x)

where π(x) := p(y ≤ τ |x) =⇒ a probabilistic classifier.

• Model acquisition function a directly as π̂t learnt from labels zt = I[yt ≤ τ ]

↪→ Effective and scalable with flexible classifiers (e.g., deep nets, random forests, etc.)
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BORE++: BORE with improved uncertainty estimates (our contributions)

Can BORE be equipped with theoretical guarantees?

BORE++: Optimising an upper confidence bound πt,δ instead of the best-fit π̂t leads

to bounded regret:

min
t≤T

f(xt)− f(x∗) ∈ Õ
(
T−

1/2
)

5



BORE++: BORE with improved uncertainty estimates (our contributions)

Can BORE be equipped with theoretical guarantees?

BORE++: Optimising an upper confidence bound πt,δ instead of the best-fit π̂t leads

to bounded regret:

min
t≤T

f(xt)− f(x∗) ∈ Õ
(
T−

1/2
)

Can we collect observations in batches instead of single points?

Batch BORE(++): Solve the batch selection problem via approximate inference:

{xt,i}Mi=1 ∼ qt ∈ argmin
q∈Q

DKL(q||p̂t)

where p̂t ∝ πt,δ or π̂t. We solve it via Stein variational gradient descent (SVGD).
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Experiments on global optimisation benchmarks

Experimental results on synthetic (top) and real-data (bottom) benchmarks
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Conclusion

Contributions

• Theoretical guarantees for BORE algorithms

• Batch BORE extension and its guarantees

• Experimental results on global optimisation benchmarks

Please, come to our poster session for Q&A
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