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• Multi-Armed Bandit (MAB):
• A fundamental online learning model
• Exploration-exploitation trade-off
• Goal: maximize the accumulated reward

• Combinatorial Multi-Armed Bandit (C-MAB)
• A more general framework
• Base arms, super arm
• Goal: identify the optimal super-arm which maximize the sum of rewards

of its containing base arms
• Applications: wireless scheduling, crowdsourcing
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Motivation



However, in real world,
• The agent usually subjects to some operational constraints

• Knapsacks constraints: the process terminates when the total resource budget has 
been used-up
• Limited inventory in dynamic pricing
• Network resource allocation

• Fairness constraints: the frequency of an arm can be taken must exceed a threshold
• Wireless scheduling with QoS guarantees
• Fairness-aware ad recommendation or federated-learning systems

• Hybrid or multi-type constraints
• Information gathering in IoT systems
• Energy dispatching in power systems
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Motivation



• 𝑁 base arms, reward realization vector 𝒇(𝑡), mean reward vector 𝝁
• 𝑡-th round action/decision 𝒂 𝑡 ∈ {𝒂|𝒂 ∈ {0,1}! , ||𝒂||" ≤ 𝑚}
• Feedback model: semi-bandit feedback
• (Instantaneous) reward: 𝑅# = ∑$%"! 𝑓$(𝑡)𝑎$(𝑡)
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Combinatorial bandits with linear constraints



• 𝑁 base arms, reward realization vector 𝒇(𝑡), mean reward vector 𝝁
• 𝑡-th round action/decision 𝒂 𝑡 ∈ {𝒂|𝒂 ∈ {0,1}! , ||𝒂||" ≤ 𝑚}
• Feedback model: semi-bandit feedback
• (Instantaneous) reward: 𝑅# = ∑$%"! 𝑓$(𝑡)𝑎$(𝑡)
• Constraints: 𝒈 𝒂 𝑡 = [𝑔" 𝒂 𝑡 , 𝑔& 𝒂 𝑡 , … , 𝑔! 𝒂 𝑡 ]'
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• Goal:

max>
#%"

'

𝑅# , s. t. >
#%"

'

𝒈(𝒂 𝑡 ) ≤ 𝟎

• Performance metric: regret and constraint violations

Regret 𝑇 = OPT 𝑇 − E >
#%"

'

𝑅# , Vio 𝑇 =>
#%"

'

𝒈(𝒂 𝑡 )

• Remark
• First to study the combinatorial multi-armed bandits with long-term constraints 
• Generalization of several prominent lines of prior work, including unconstrained

bandits, bandits with fairness constraints, bandits with knapsacks (BwK), etc
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• Observation:
• No super-arm is optimal across all rounds, but there exists an optimal sampling 

distribution over super-arms, i.e., optimal stationary randomized policy
• When 𝝁 is known, the optimal stationary randomized policy can be characterized as

max
𝒙∈#!

𝝁, 𝒙 , s. t. 𝒈 𝒙 ≤ 𝟎, 𝟎 ≤ 𝒙 ≤ 𝟏, ||𝒙||$ ≤ 𝑚.
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Algorithm: UCB-LP



• UCB-LP
• UCB estimate computation
• LP solving to obtain an

optimistic probabilistic 
selection vector 
• Constructing a sampling

probability distribution over
super-arms
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Algorithm: UCB-LP



• General case: 𝒈(P) is generally linear

• Comparison with prior related works
• Better dependence on ∆%&' and 𝑁, combinatorial setting
• Valid for all linear constraints, while theirs is only valid for specific kind of constraints, 

either knapsacks constraints, or fairness constraints
• Without requiring any assumptions or knowledge of some parameters of the problem 

instance a prior 
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Performance guarantee of UCB-LP

Regret 𝑇 ≤ 𝑂
𝑚𝑁 log 𝑇
∆%&'

, E[Vio 𝑇 ] ≤ 0.



• General case: 𝒈(P) is generally linear

• Comparison with prior related works
• Better (optimal) dependence on ∆%&' and 𝑁, combinatorial setting
• Valid for all linear constraints, while theirs is only valid for specific kind of constraints, 

either knapsacks constraints, or fairness constraints
• Without requiring any assumptions or knowledge of some parameters of the problem 

instance a prior 
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Performance guarantee of UCB-LP

Regret 𝑇 ≤ 𝑂
𝑚𝑁 log 𝑇
∆%&'

, E[Vio 𝑇 ] ≤ 0.



• General case: 𝒈(P) is generally linear

• Constant (better) regret guarantee for special case: fairness constraints
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Performance guarantee of UCB-LP

Regret 𝑇 ≤ 𝑂
𝑚𝑁 log 𝑇
∆%&'

, E[Vio 𝑇 ] ≤ 0.

Regret 𝑇 ≤ 𝑂
𝑚𝑁(

∆%&'( , E[Vio 𝑇 ] ≤ 0.
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UCB-PLLP: an efficient version of UCB-LP

Main idea
• (partial) Lagrangian tranformation

max
𝒙∈#!

$𝝁(𝑡), 𝒙 − 𝝀𝒕𝑻𝒈(𝒙) , s. t. 𝟎 ≤ 𝒙 ≤ 𝟏, ||𝒙||& ≤ 𝑚.
⇕

max
𝒂

$𝝁 𝑡 − 𝝀𝒕𝑻∇𝒈(𝒂(𝑡 − 1)), 𝒂 , s. t. 𝒂 ∈ {0,1}(, ||𝒂||& ≤ 𝑚.

• Virtual queue technique incorporated with “pessimistic” mechanism

𝑸 𝑡 = [𝑸 𝑡 − 1 + 𝒈 𝒂 𝑡 − 1 + 𝜖) ⋅ 𝑰]*

𝝀) = 𝛼)𝑸(𝑡)
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UCB-PLLP: an efficient version of UCB-LP

Set 𝜖) = 𝑂 *
) and 𝛼) = 𝑂 +

* ) , then UCB-PLLP achieves:

Regret 𝑇 ≤ C𝑂 𝑚 𝑇 , ℙ[Vio 𝑇 > 𝟎] ≤ 𝑂(𝑒,* -).



Q & A
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Thanks for Your Attention!


