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Motivation

* Multi-Armed Bandit (MAB):

* A fundamental online learning model
* Exploration-exploitation trade-off
e Goal: maximize the accumulated reward

 Combinatorial Multi-Armed Bandit (C-MAB)

* A more general framework

* Base arms, super arm

* Goal: identify the optimal super-arm which maximize the sum of rewards
of its containing base arms

* Applications: wireless scheduling, crowdsourcing



Motivation

However, in real world,

* The agent usually subjects to some operational constraints
* Knapsacks constraints: the process terminates when the total resource budget has
been used-up

e Limited inventory in dynamic pricing
* Network resource allocation

e Fairness constraints: the frequency of an arm can be taken must exceed a threshold
* Wireless scheduling with QoS guarantees
* Fairness-aware ad recommendation or federated-learning systems

e Hybrid or multi-type constraints
* Information gathering in loT systems
* Energy dispatching in power systems



Combinatorial bandits with linear constraints

* N base arms, reward realization vector f(t), mean reward vector u
e t-th round action/decision a(t) € {ala € {0,1}",||a||; < m}
* Feedback model: semi-bandit feedback

* (Instantaneous) reward: R, = Y1, fi(t)a;(t)
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* (Instantaneous) reward: R, = Y1, fi(t)a;(t)

 Constraints: g(a(t)) = [g; (a(t)),gz (a(t)), oy N (a(t))]T



Combinatorial bandits with linear constraints

e Goal:

T
max E R,

Regret(T) = OPT(T) —

e Remark

s. t. z glat) <0

* Performance metric: regret and constralnt V|olat|ons

3w

. Vio(T) = Z g(a(®)

* First to study the combinatorial multi-armed bandits with long-term constraints

* Generalization of several prominent lines of prior work, including unconstrained
bandits, bandits with fairness constraints, bandits with knapsacks (BwK), etc



Algorithm: UCB-LP

e Observation:

* No super-arm is optimal across all rounds, but there exists an optimal sampling
distribution over super-arms, i.e., optimal stationary randomized policy

* When u is known, the optimal stationary randomized policy can be characterized as

max (u,x), s.t. gx) <0, 0<x<1, ||x]|; <m.
xXERN



Algorithm: UCB-LP

* UCB-LP

* UCB estimate computation R
e LP solving to obtain an 1: Imitialization: A = {x|xz € {0,1}", ||z||;, < m}

optimistic probabilistic 2: forround¢ =1,..7"— 1do
selection vector 3:  Compute UCBs: fi;(t) = min{z; (t) + 1/ 05, 1}, Vi.
» Constructing a sampling Solve optimization problem (4) and obtain x(t).

probability distribution over Construct a distribution 7:(-) over A such that
super-arms Er, [a(t)] = =(t), and sample a(t) ~ 7.

6:  Pull the arms according to the action vector a(t).

7.  Update the statistics: h;(t + 1), m;(t + 1), Vi.

8: end for

Algorithm 1 UCB-LP
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Performance guarantee of UCB-LP

* General case: g(-) is generally linear

mN logT)

L Regret(T) < 0 ( E[Vio(T)] < 0.

Amin




Performance guarantee of UCB-LP

* General case: g(-) is generally linear

mN logT)

Regret(T) < 0 ( E[Vio(T)] < 0.

Amin

* Comparison with prior related works
* Better (optimal) dependence on A,jn, and N, combinatorial setting

 Valid for all linear constraints, while theirs is only valid for specific kind of constraints,
either knapsacks constraints, or fairness constraints

* Without requiring any assumptions or knowledge of some parameters of the problem
instance a prior
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Performance guarantee of UCB-LP

* General case: g(-) is generally linear

|

Regret(T) < O (

mN logT)

Amin

E[Vio(T)] < 0.

* Constant (better) regret guarantee for special case: fairness constraints

-

m
Regret(T) < 0O <

NZ

2 -
min

), E[Vio(T)] < 0.

~
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UCB-PLLP: an efficient version of UCB-LP

Main idea
 (partial) Lagrangian tranformation

max (fi(t),x) —Alg(x), s.t. 0<x<1, ||x||; <m.
x€RN

(i
max (@) —ATvg(a(t —1)),a), s.t. a€ {01}V, ||all, <m.

* Virtual queue technique incorporated with “pessimistic” mechanism

Q) =[Qt -1 +g(at—1)) +e -11*

Ar = a;Q(t)
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UCB-PLLP: an efficient version of UCB-LP

Algorithm 2 UCB-PLLP
1: Initialization: A = {z|x € {0,1}", |||, < m}
2: forroundt =1,..T —1do
3:  Compute UCBs: 1;(t) = min{7, (t) + 1/ g 1}, V.
4. Update the primal iterate: a(t) =

arg max (4(t) — ae o/, Vor(alt - 1)Qx(0), a)

5:  Play arm ¢ and receive f;(t) if a;(¢) = 1.

6: Update the virtual queues:

7. Qt+1)=[Q(t)+g(a(t)) +eI]t.

8:  Update the statistics: h;(t + 1), &, (t + 1), Vi.
9: end for

-
Sete; =0 (%) and a; = (5\/_) then UCB-PLLP achieves:

Regret(T) < é(m\/—), P[Vio(T) > 0] < 0(6_5‘/7).
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Q&A

Thanks for Your Attention!



