CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

Hung Le*, Yue Wang*, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi

Presenting at NeurIPS 2022 Thirty-sixth Conference on Neural Information Processing Systems, New Orleans

Code and Model: https://github.com/salesforce/CodeRL

Paper: <u>https://arxiv.org/abs/2207.01780</u>

Blog: https://blog.salesforceairesearch.com/coderl/

1. CodeRL improves pretrained LMs for program synthesis by incorporating unit test signals in model training

1. CodeRL improves pretrained LMs for program synthesis by incorporating unit test signals in model training

1. CodeRL improves pretrained LMs for program synthesis by incorporating unit test signals in model training

3. We extend CodeT5 with larger pretraining data, better pretraining objective, and larger model size

Pretraining Data

GitHub Code dataset

0,

Next token prediction

Up to 770M

We evaluate CodeRL on two benchmarks: one with competitive programming tasks and another with beginner-level programming tasks

Solution Program

Write a python function to check if a given number is one less than twice its reverse. Your code should satisfy these tests:

assert check(70) == False assert check(23) == False assert check(73) == True

> Write a Python function to sort the given array by using merge sort. Your code should satisfy these tests:

assert merge_sort([3, 4, 2, 6, 5, 7, 1, 9]) == [1, 2, 3, 4, 5, 6, 7, 9] assert merge_sort([7, 25, 45, 78, 11, 33, 19]) == [7, 11, 19, 25, 33, 45, 78] assert merge_sort([3, 1, 4, 9, 8]) == [1, 3, 4, 8, 9]

APPS

MBPP

CodeRL achieves new SoTA performance in programming tasks in both APPS and MBPP (zero-shot)

Performance by pass@k on APPS

Model	Size	pass@80
GPT	224M	7.2
GPT	422M	12.6
GPT	1B	22.4
GPT	4B	33.0
GPT	8B	40.6
GPT	68B	53.6
GPT	137B	61.4
CodeRL+CodeT5 (ZS)	770M	63.0

APPS

MBPP

CodeRL models show improvement over baseline models by generating more functionally correct programs

CodeRL models show improvement over baseline models by generating more functional correct programs Allen has a LOT of money. He has \$n\$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are \$1\$, \$5\$, \$10\$, \$20\$, \$100\$. What is the minimum number of bills Allen could receive after withdrawing his entire balance? CodeRL models show improvement over baseline models by generating more functional correct programs

Example Unit Tests				
Input:	125			
Output:	3			
Input:	43			
Output:	5			
• • •				

Ground-truth Program n = int(input()) ans = 0ans += n/(100)n %= 100 ans += (n // 20) n %= 20 ans += n //10 n %= 10 9 ans += n//510 11 $n_{8} = 5$ 12 ans += n//113 14 print(ans) **Example tests: Passed** Hidden tests: Passed

	Hidden Unit Tests
Input: Output:	74 8
Input: Output: 	82655 830

CodeT5 Output Program		
1	<pre>n = int(input())</pre>	
2	<pre>a = defaultdict(int)</pre>	
4	for i in manage(1, 101).	
6	a[i] = n // i	
7	n = n % i	
8	ans = 0	
10	for i in range(1, 101):	
11	if n < a[i]:	
13	n -= a[i]	
14	print(ang)	
Example tests: Failed		

Hidden tests: Failed

CodeRL models show improvement over baseline models by generating more functional correct programs

In summary, CodeRL is a general framework that integrates pretrained LMs and RL holistically for program synthesis

RL framework

Pretrained LMs such as CodeT5

CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning

Hung Le*, Yue Wang*, Akhilesh Deepak Gotmare, Silvio Savarese, Steven C.H. Hoi

THANK YOU!

Code and Model: https://github.com/salesforce/CodeRL

Paper: https://arxiv.org/abs/2207.01780

Blog: https://blog.salesforceairesearch.com/coderl/

