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« The performance highly relies on the power of PQCs
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 But it is also important
« Kernel's perspective [Schuld 2021]
« Influence the generalization error [Caro et al 2021, Banchi et al 2021]




This Work

* Focus
« PQC-based data encoding strategy

« Question
« How to systematically understand such encoding strategies?



Main results

« Concentration -- average encoded quantum state
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Figure 1: Cartoon illustrating the concentration of PQC-based data encoding. The average encoded
quantum states concentrates on the maximally mixed state at an exponential rate on the encoding
depth. This concentration implies the theoretical indistinguishability of the encoded quantum data.



Data Encoding Concentration

Theorem 2. (Data Encoding Concentration) Assume each element of a 3nD-dimensional vector x
obeys an IGD, i.e., xjar ~ N(tjdak, 05 4), where o 41 > o for some constant o and 1 < j <
n,1 <d< D,1 <k <3.Ifxis encoded into an n-qubit pure state p(x) according to the circuit in
Fig. 3, the quantum divergence between the average encoded state p and the maximally mixed state 1

is upper-bounded as

D; (p]|1) < log(1 + (2" — 1)e™P7").
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Theorem 2. (Data Encoding Concentration) Assume each element of a 3nD-dimensional vector x
obeys an IGD, i.e., xjar ~ N(tjdak, 05 4), where o 41 > o for some constant o and 1 < j <
n,1 <d< D,1 <k <3.Ifxis encoded into an n-qubit pure state p(x) according to the circuit in

Fig. 3, the quantum divergence between the average encoded state p and the maximally mixed state 1
is upper-bounded as
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« Quantum 2-relative Renyi divergence decays exponentially in depth D

Da(pllo) = log Tr [p%0 "]
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« Loss function
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Proposition 4. Consider a K -classification task with the data set D defined in Def. 3. If the encoding
depth D > -, [(n +4)In2 4 21In (1/¢€)] for some € € (0, 1), then the partial gradient of the loss
function deﬁned in Eq. (8) with respect to each parameter 0; of the employed QNN is bounded as

aL(e D)

‘ < Ke (10)

with a probability of at least 1 — 2e—Me"/8,
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Proposition 4. Consider a K -classification task with the data set D defined in Def. 3. If the encoding
depth D > —5 [(n+4)In2 + 21n (1/€)] for some € € (0, 1), then the partial gradient of the loss
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with a probability of at least 1 — 2e—Me"/8,

« Limit the trainability (probably classification ability) of QNNs
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* In the Scenario of Quantum State Discrimination
« Success probability

Psuce = {IIIIla]?( — Z Tr Hkpk; M] with ﬁk,M Z yk (m)
kSk

Proposition 5. Consider a K-class discrimination task with the data set D defined in Def. 3. If the
encoding depth D > 25 [(n+4)In2 + 21n (1/e€)] for a given € € (0, 1), then with a probability of

at least 1 — 2e—M¢e"/ 8, the maximum success probability pg.cc is bounded as

Psuce < 1/K +e. (12)
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Proposition 5. Consider a K-class discrimination task with the data set D defined in Def. 3. If the
encoding depth D > 25 [(n+4)In2 + 21n (1/e€)] for a given € € (0, 1), then with a probability of
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at least 1 — 2e™ the maximum success probability pg.cc is bounded as

Psuce < 1/K + €. (12)

» Restrict the distinguishability of POVMs



Numerical Experiments (1)

« Numerical quantum divergences
indeed decrease exponentially for
the following PQCs

10) 1R, (21) lr IS }zy_@;;)} | U3(0150) lr N E@ch)% (H)
|
10) | By (22) Ry(21412) + ' {U3(626.10) Ry (0a1:10) +
|
10) — Ry(z3) : © Ry(z4a+3) 4:“ { —U3(63,7,11) : & Ry(041411) J:r
X(D — 1) XLQNN

Dy (poll1/27)

| R qubits = 6 (upper-bound)

™
s
~-~~
-
-~
o

-~
-
-~
-~
~
~

— - # qubits = 2 (numerical) \.\ 4
# qubits = 2 (upper-bound) N '\.‘ A
| —®— # qubits = 4 (numerical) A

i —'— #qubits = 4 (upper-bound) s
] == # qubits = 6 (numerical) \

------

T T T

2 -+ 6 8

Depth




Numerical Experiments (2)
 Synthetic Data Set — Test accuracy
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Figure 6: Numerical results for synthetic data sets under the encoding strategy in Fig. 4. In all
qubit cases, (a) the test accuracy of QNN (or (b) the maximum success probability of POVM) will
eventually decay to 50% or so with the depth growing; (¢) In the 4 qubit case, for instance, the
training losses of QNN do not decrease and stay at about In 2 in the training process when the depth
becomes large enough.
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Figure 6: Numerical results for synthetic data sets under the encoding strategy in Fig. 4. In all
qubit cases, (a) the test accuracy of QNN (or (b) the maximum success probability of POVM) will
eventually decay to 50% or so with the depth growing; (¢) In the 4 qubit case, for instance, the
training losses of QNN do not decrease and stay at about In 2 in the training process when the depth
becomes large enough.

« These results are in line with our theoretical analysis, i.e., limitations of PQCs



Numerical Experiments (3)
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Figure 7: Numerical results of QNN for MNIST data set under the encoding strategy in Fig. 4. (a)
The curves for the quantum divergence between the averaged encoded state p of each handwritten
digit and the maximally mixed state 1 decrease exponentially on depth. (b) The test accuracy reduce
rapidly with a larger encoding depth; (c) In the case of classifying digits 3 and 6, when the depth 1s
large (e.g., 8), it is difficult to keep the training loss away from In 2 in the training process.



Conclusion

 This work explores the data encoding concentration by proving the
exponential decay (in encoding depth) of the upper bound of
guantum divergence.

« The quantum states encoded by deep PQCs will seriously limit the
classification performance of downstream supervised learning tasks.

 This work also provides insights in developing nontrivial quantum
encoding strategies, i.e., avoiding concentration.
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