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Introduction
Problem setting

○ 𝑓 ∶ nonconvex function
minimize

𝑥∈ℝ𝑑
𝑓(𝑥)

Gaussian homotopy (GH)
○ Method to find better stationary points for non-convex

optimization using Gaussian smoothing

Gaussian smoothing
○ 𝑢 ∼ 𝒩(0, I𝑑)
○ 𝑡 > 0 ∶ smoothing parameter (larger -> smoother)

𝐹(𝑥, 𝑡) ∶= 𝐸𝑢[𝑓(𝑥 + 𝑡𝑢)]
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Toy example to understand Gaussian homotopy
Problem: GD based method cannot reach optimal solution

when starting from a bad initial point
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Toy example to understand Gaussian homotopy

Optimize a simpler smoothed function
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Toy example to understand Gaussian homotopy

Decrease the smoothing parameter 𝑡 and optimize a function closer
to the original one from the previous solution
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Toy example to understand Gaussian homotopy

By repeating the similar procedure, the algorithm has successfully
found the optimal solution!
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Problems of previous work
○ There exists some works [Chen, 2012; Hazan et al., 2016;

Mobahi et al., 2015] that give theoretical analyses of Gaussian
homotopy.

○ However, they have not analyzed the convergence rate or the
function class to be analyzed is limited

○ Moreover, all of them consider double loop approach, which
requires high computational costs

Algorithm 1 Double loop Gaussian homotopy method
1: Require: Iteration number 𝐾, initial point 𝑥0,
2: sequence {𝑡1, ..., 𝑡𝐾} satisfying 𝑡1 > ... > 𝑡𝐾.
3: // Outer loop
4: for 𝑘 = 1, ...𝐾 do
5: // Inner loop
6: Find a stationary point 𝑥𝑘 of 𝐹(𝑥, 𝑡𝑘)
7: with the initial solution 𝑥𝑘−1.
8: return 𝑥𝐾
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Contributions
○ Propose novel single loop GH (SLGH) algorithms and analyze

their convergence rates to an 𝜖-stationary point
∘ SLGH algorithms become faster than a double loop one

by around its number of outer loops.
∘ This is the first analysis of convergence rates of GH

methods for general non-convex problems

○ Propose zeroth-order SLGH (ZOSLGH) algorithms based on
zeroth-order estimators of gradient and Hessian values

∘ Useful when calculation of Gaussian smoothing is difficult

○ Check the performance of SLGH on numerical experiments
(artificial non-convex examples, black-box adversarial attacks)

∘ Converges much faster than an existing double loop GH
∘ Able to find better solutions than GD-based methods.
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Proposed single loop algorithms (first-order)

Algorithm 2 SLGH (Single Loop Gaussian Homotopy)
1: Choose initial solution 𝑥0 and initial smoothing parameter 𝑡0.
2: for 𝑘 = 1, ...𝐾 do
3: Query a gradient oracle 𝐺𝑥 = ∇𝑥𝐹(𝑥𝑘−1, 𝑡𝑘−1)
4: Query a derivative oracle 𝐺𝑡 = 𝜕𝐹(𝑥𝑘−1,𝑡𝑘−1)

𝜕𝑡
5: Update 𝑥𝑘 by

𝑥𝑘 = 𝑥𝑘−1 − 𝛽𝑘𝐺𝑥

6: Update 𝑡𝑘 by

𝑡𝑘 = { max{0, min{𝑡𝑘−1 − 𝜂𝑘𝐺𝑡, 𝛾𝑡𝑘}} (SLGHd)
𝛾𝑡𝑘 (SLGHr)

7: return ̂𝑥 = 𝑥𝑘′ , 𝑘′ = argmin𝑘∈{0,...,𝐾}‖∇𝑓(𝑥𝑘)‖2
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Theoretical analysis (first-order)

Theorem (Convergence analysis for SLGH)
Suppose Assumption A1 holds, and let ̂𝑥 ∶= 𝑥𝑘′ ,
𝑘′ = argmin𝑘∈[𝑇 ] ‖∇𝑓(𝑥𝑘)‖. Set the stepsize for 𝑥 as 𝛽 = 1/𝐿1
(𝐿1 ∶ smoothness parameter of 𝑓).
Then, for any setting of the parameter 𝛾, the output ̂𝑥 satisfies
‖∇𝑓( ̂𝑥)‖ ≤ 𝜖 with the iteration complexity of

𝑇 = 𝑂 (𝑑3/2/𝜖2).

Further, if we choose 𝛾 ≤ 𝑑−Ω(𝜖2), the iteration complexity can be
bounded as

𝑇 = 𝑂(1/𝜖2) (= iteration complexity of GD).
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Experiment: adversarial attack
Black-box adversarial attack problem

minimize
𝑥∈ℝ𝑑

ℓ(0.5 tanh(tanh−1(2𝑎) + 𝑥)

+ 𝜆‖0.5 tanh(tanh−1(2𝑎) + 𝑥) − 𝑎‖2

○ 𝑎 ∈ ℝ𝑑: input image
○ ℓ ∶ ℝ𝑑 → ℝ: attack loss
○ 𝜆 > 0: regularization hyperparameter
○ 𝑥: noise

Figure: Adversarial attack example
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Results (Dataset: CIFAR-10, 𝑁 = 100)
○ Initial point 𝑥0 ∶ 0 (no-noise, local minimum)

succ rate iters to 1st succ total loss
ZOSGD 0.88 835 27.70

ZOAdaMM 0.85 3335 20.24
ZOGradOpt 0.65 6789 41.45
ZOSLGHr
(𝛾 = 0.999)

0.93 4979 14.26

ZOSLGHd
(𝛾 = 0.999, 𝜂 = 1𝑒−4)

0.92 4436 16.49

○ Single loop GHs achieve higher succ rates than SGD algos
∘ Can escape the local minima (𝑥 = 0) due to sufficient

smoothing
○ Single loop GHs achieve higher succ rates and fewer iters to

1st success than double loop GH
∘ Single loop structure requires lower computational costs
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