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Introduction

Problem setting
O f : nonconvex function

minimize T
nimize f (z)

Gaussian homotopy (GH)

O Method to find better stationary points for non-convex
optimization using Gaussian smoothing

Gaussian smoothing
O unr N<Ov Id)
O t > 0 : smoothing parameter (larger -> smoother)

F(a,t) = B,[f(x + tu)]
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Toy example to understand Gaussian homotopy

Problem: GD based method cannot reach optimal solution
when starting from a bad initial point

/

o « bad initial point
« optimal solution

4 -2 o 2 4 6
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Toy example to understand Gaussian homotopy

—— original
smoothed (t = 4)
« initial point
« solution

4 -2 0 2 4 6

Optimize a simpler smoothed function
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Toy example to understand Gaussian homotopy

—— original
smoothed (t=4)

—— smoothed (t=1)

« initial point

« solution

4 -2 o 2 4 6

Decrease the smoothing parameter ¢ and optimize a function closer
to the original one from the previous solution
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Toy example to understand Gaussian homotopy

—— original
smoothed (t=4)
smoothed (t=1)

« initial point
« solution

4 -2 o 2 4 &

By repeating the similar procedure, the algorithm has successfully
found the optimal solution!
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Problems of previous work

O There exists some works [Chen, 2012; Hazan et al., 2016;
Mobahi et al., 2015] that give theoretical analyses of Gaussian
homotopy.

O However, they have not analyzed the convergence rate or the
function class to be analyzed is limited

O Moreover, all of them consider approach, which
requires high computational costs

Algorithm 1 Double loop Gaussian homotopy method

1: Require: lteration number K, initial point x,

2: sequence {tq,...,tx } satisfying t; > ... > t .
3: // Outer loop

4: for k=1,.. K do

5: // Inner loop

6: Find a stationary point z;, of F(x,t;)

7: with the initial solution z;_;.

8: return
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Contributions
O Propose novel and analyze
their to an e-stationary point

o SLGH algorithms become faster than a double loop one
by around its number of outer loops.

o This is the of convergence rates of GH
methods for general non-convex problems

O Propose zeroth-order SLGH (ZOSLGH) algorithms based on
zeroth-order estimators of gradient and Hessian values

o Useful when calculation of Gaussian smoothing is difficult

O Check the performance of SLGH on
(artificial non-convex examples, black-box adversarial attacks)

o Converges much faster than an existing double loop GH
o Able to find better solutions than GD-based methods.
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Proposed single loop algorithms (first-order)

Algorithm 2 SLGH (Single Loop Gaussian Homotopy)

: Choose initial solution z, and initial smoothing parameter ¢.
cfork=1,..K do

Query a gradient oracle G, = V_ F(z),_q,t;_1)

Query a derivative oracle G, = %

Update z;, by

g R wne

T =5 — PG,

7. return T =1y, K = awgnaimke{o"“7K}HVf(x,c)H2
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Theoretical analysis (first-order)

Theorem (Convergence analysis for SLGH)

Suppose Assumption Al holds, and let = := x},,
kK = argming _ |V f(z)|l. Set the stepsize for v as f =1/L,
(L, : smoothness parameter of f).

Then, for any setting of the parameter -y, the output I satisfies
|V f(z)| < e with the iteration complexity of

T = 0 (d%?/&).

Further, if we choose v < d—) | the iteration complexity can be
bounded as

T —
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Experiment: adversarial attack

Black-box adversarial attack problem

minimize £(0.5tanh(tanh™ ' (2a) + z)

zeR4

+ A|0.5 tanh(tanh ™' (2a) + ) — a/?

O a € R?%: input image

O ¢:R% — R: attack loss

O A > 0: regularization hyperparameter
O z: noise

automobile airplane

Figure: Adversarial attack example
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Results (Dataset: CIFAR-10, N = 100)

O |Initial point z; : 0 (no-noise, local minimum)

succ rate iters to Ist succ total loss

Z0OSGD 0.88 835 27.70
ZOAdaMM 0.85 3335 20.24
Z0OGradOpt 0.65 6789 41.45

4979 14.26
4436 16.49
@) achieve higher succ rates than SGD algos
o Can escape the local minima (z = 0) due to sufficient
smoothing
O achieve higher succ rates and fewer iters to

1st success than double loop GH
o Single loop structure requires lower computational costs
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