Single Loop Gaussian Homotopy for Non-convex Functions

Hidenori Iwakiri

Joint work with Yuhang Wang, Shinji Ito, Akiko Takeda

Introduction

Problem setting

$\bigcirc\ f:$ nonconvex function

 $\underset{x \in \mathbb{R}^d}{\text{minimize}} \ f(x)$

Gaussian homotopy (GH)

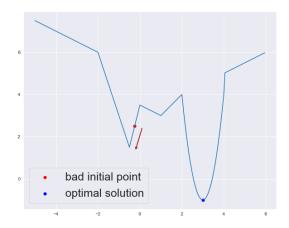
 Method to find better stationary points for non-convex optimization using Gaussian smoothing

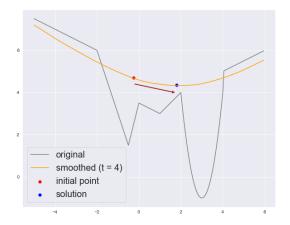
Gaussian smoothing

- $\bigcirc \ u \sim \mathcal{N}(0, \mathbf{I}_d)$
- $\bigcirc t > 0$: smoothing parameter (larger -> smoother)

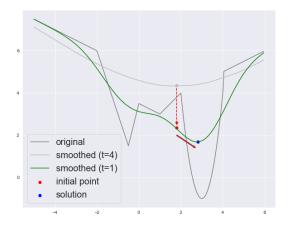
$$F(x,t):=E_u[f(x+tu)]$$

Problem: GD based method cannot reach optimal solution when starting from a bad initial point

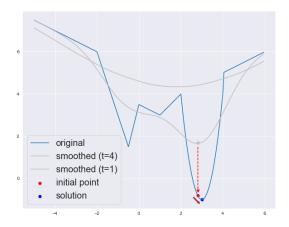




Optimize a simpler smoothed function



Decrease the smoothing parameter t and optimize a function closer to the original one from the previous solution



By repeating the similar procedure, the algorithm has successfully found the optimal solution!

Problems of previous work

- There exists some works [Chen, 2012; Hazan et al., 2016; Mobahi et al., 2015] that give theoretical analyses of Gaussian homotopy.
- However, they have not analyzed the convergence rate or the function class to be analyzed is limited
- Moreover, all of them consider double loop approach, which requires high computational costs

Algorithm 1 Double loop Gaussian homotopy method

1: **Require:** Iteration number K, initial point x_0 , 2: sequence $\{t_1, ..., t_K\}$ satisfying $t_1 > ... > t_K$. 3: // Outer loop 4: for k = 1, ...K do 5: // Inner loop 6: Find a stationary point x_k of $F(x, t_k)$ 7: with the initial solution x_{k-1} . 8: return x_K

Contributions

- \bigcirc Propose novel single loop GH (SLGH) algorithms and analyze their convergence rates to an ϵ -stationary point
 - SLGH algorithms become faster than a double loop one by around its number of outer loops.
 - This is the first analysis of convergence rates of GH methods for general non-convex problems
- Propose zeroth-order SLGH (ZOSLGH) algorithms based on zeroth-order estimators of gradient and Hessian values

Useful when calculation of Gaussian smoothing is difficult

- Check the performance of SLGH on numerical experiments (artificial non-convex examples, black-box adversarial attacks)
 - Converges much faster than an existing double loop GH
 - Able to find better solutions than GD-based methods.

Proposed single loop algorithms (first-order)

Algorithm 2 SLGH (Single Loop Gaussian Homotopy)

- 1: Choose initial solution x_0 and initial smoothing parameter t_0 .
- 2: for k = 1, ...K do
- 3: Query a gradient oracle $G_x = \nabla_x F(x_{k-1}, t_{k-1})$
- 4: Query a derivative oracle $G_t = \frac{\partial F(x_{k-1}, t_{k-1})}{\partial t}$
- 5: Update x_k by

$$x_k = x_{k-1} - \beta_k G_x$$

6: Update t_k by

$$t_k = \left\{ \begin{array}{cc} \max\{0,\min\{t_{k-1}-\eta_k G_t, \ \gamma t_k\}\} & (\mathsf{SLGH}_\mathsf{d}) \\ \gamma t_k & (\mathsf{SLGH}_\mathsf{r}) \end{array} \right.$$

7: return
$$\hat{x}=x_{k'},\ k'=\mathrm{argmin}_{k\in\{0,...,K\}}\|\nabla f(x_k)\|^2$$

Theoretical analysis (first-order)

Theorem (Convergence analysis for SLGH)

Suppose Assumption A1 holds, and let $\hat{x} := x_{k'}$, $k' = \operatorname{argmin}_{k \in [T]} \|\nabla f(x_k)\|$. Set the stepsize for x as $\beta = 1/L_1$ (L_1 : smoothness parameter of f).

Then, for any setting of the parameter γ , the output \hat{x} satisfies $\|\nabla f(\hat{x})\| \leq \epsilon$ with the iteration complexity of

 $T = O\left(d^{3/2}/\epsilon^2\right).$

Further, if we choose $\gamma \leq d^{-\Omega(\epsilon^2)}$, the iteration complexity can be bounded as

 $T = O(1/\epsilon^2)$ (= iteration complexity of GD).

Experiment: adversarial attack

Black-box adversarial attack problem

$$\begin{split} \underset{x \in \mathbb{R}^d}{\text{minimize}} \quad \ell(0.5 \tanh(\tanh^{-1}(2a) + x) \\ \quad + \lambda \| 0.5 \tanh(\tanh^{-1}(2a) + x) - a \|^2 \end{split}$$

 $\begin{array}{l} \bigcirc \ a \in \mathbb{R}^d: \text{ input image} \\ \bigcirc \ \ell : \mathbb{R}^d \to \mathbb{R}: \text{ attack loss} \\ \bigcirc \ \lambda > 0: \text{ regularization hyperparameter} \\ \bigcirc \ x: \text{ noise} \end{array}$

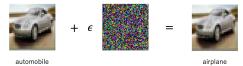


Figure: Adversarial attack example

Results (Dataset: CIFAR-10, N = 100)

 \bigcirc Initial point $x_0: 0$ (no-noise, local minimum)

	succ rate	iters to 1st succ	total loss
ZOSGD	0.88	835	27.70
ZOAdaMM	0.85	3335	20.24
ZOGradOpt	0.65	6789	41.45
$ZOSLGH_{r}$ ($\gamma = 0.999$)	<u>0.93</u>	4979	14.26
$\begin{array}{l} ZOSLGH_{d} \\ (\gamma = 0.999, \eta = 1e^{-4}) \end{array}$	<u>0.92</u>	4436	16.49

○ Single loop GHs achieve higher succ rates than SGD algos

 $\circ~$ Can escape the local minima (x=0) due to sufficient smoothing

 Single loop GHs achieve higher succ rates and fewer iters to 1st success than double loop GH

Single loop structure requires lower computational costs

References I

Chen, X. (2012): Smoothing methods for nonsmooth, nonconvex minimization. Mathematical programming, 134(1), 71–99. Hazan, E., Levy, K. Y., & Shalev-Shwartz, S. (2016): On graduated optimization for stochastic non-convex problems. International conference on machine learning, 48, 1833-1841 Mobahi, H., & Fisher, J. W. (2015): On the link between gaussian homotopy continuation and convex envelopes. International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 43–56.