

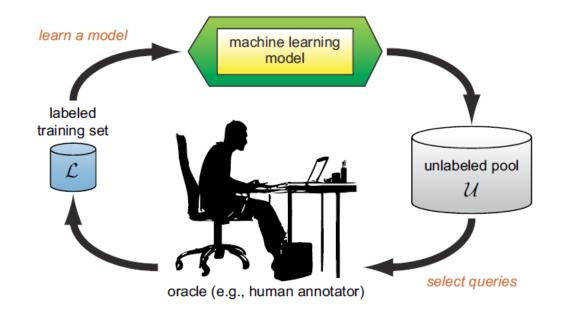
Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning

Dongmin Park (presenter), Yooju Shin, Jihwan Bang, Youngjun Lee, Hwanjun Song*, Jae-Gil Lee* Data Mining Lab, KAIST

Active Learning

Goal: Maximizing the model performance while minimizing labeling costs

→ Querying the examples that look maximally-informative

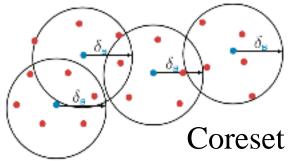


"Making an **AL algorithm** = Making a good **query strategy**"

Summary of Standard AL Approaches

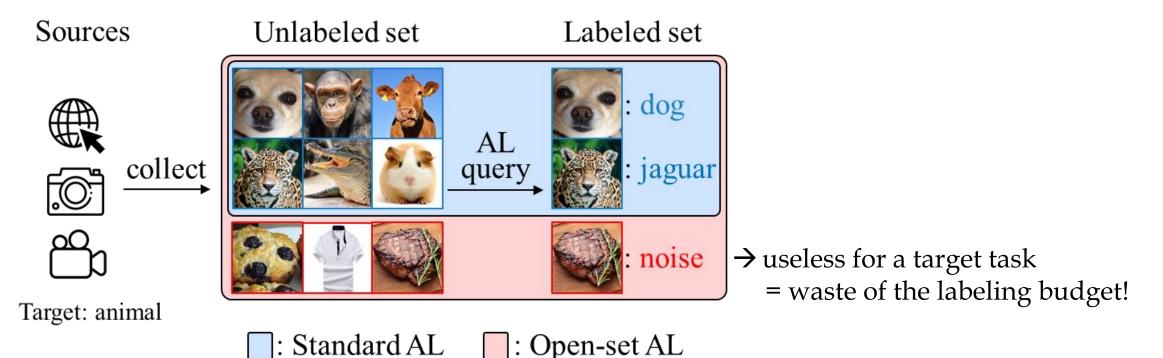
Uncertainty-based

- $x_{LC}^* = \operatorname*{argmax}_{x} 1 p_{\theta}(\hat{y}|x)$
- > Querying the example that is **least certain** by the current model
 - e.g., Softmax Confidence (CONF), Bayesian Disagreement (BALD), Learning Loss, ...
- **Diversity**-based
 - Querying the example that **best represents** the entire data distribution
 e.g., Pre-clustering, Coreset, ...
- Hybrid
 - > BADGE, BatchBALD, ...



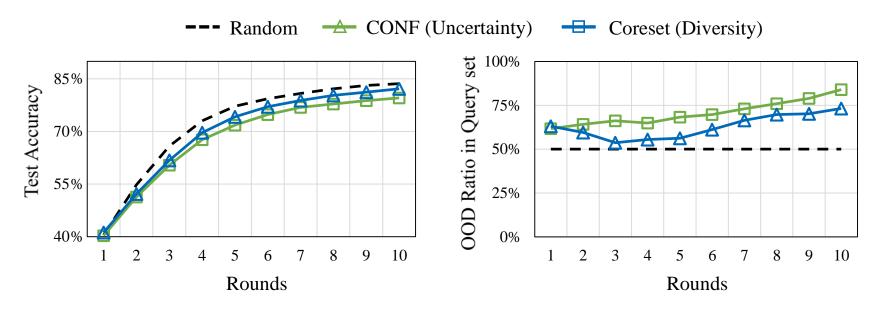
Open-set Active Learning: a more practical setup

- An unlabeled set consists of **only in-distribution** examples? \rightarrow NO
 - Unlabeled data collected from casual data curation processes, *e.g.*, web-crawling, inevitably contains open-set noise, so called out-of-distribution (OOD) examples



Importance of Handling OOD in AL

- OOD examples are usually **uncertain & diverse**, thus often being queried
- This wastes the labeling budget and significantly degrades AL performance

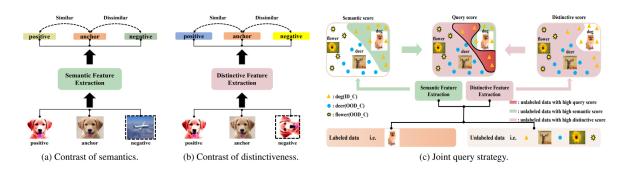


Datasets: [In: CIFAR10, OOD: SVHN], Noise Ratio : 50%

 \rightarrow Hinders the usability of AL in real-world applications!

Recent Open-set AL Approaches

• CCAL (ICCV'21)



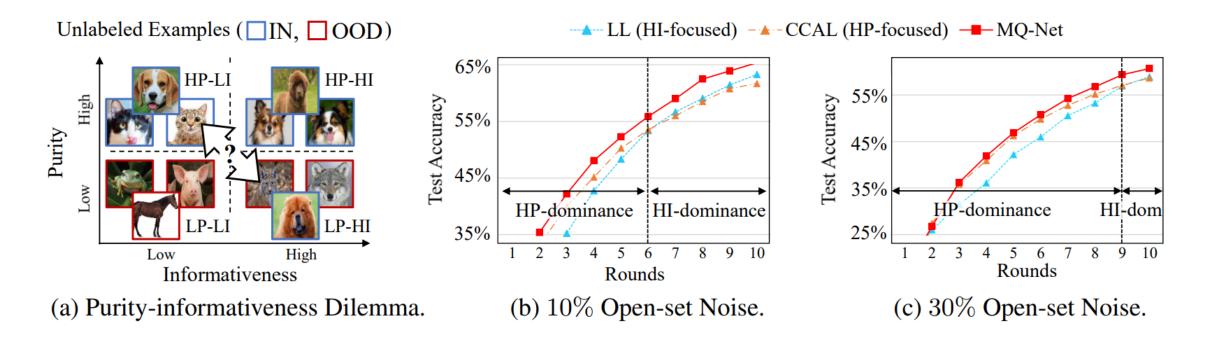
- > Learns two contrastive learners for calculating informativeness and OODness, respectively
- > Combines the two scores into a final query score using a **heuristic balancing rule**
- SIMILAR (NeurIPS'21)

SCMI	$I_f(\mathcal{A}; \mathcal{Q} \mathcal{P})$
FLCMI	$\sum_{i \in \mathcal{U}} \max(\min(\max_{j \in \mathcal{A}} S_{ij}, \max_{j \in \mathcal{Q}} S_{ij}) - \max_{j \in \mathcal{P}} S_{ij}, 0)$
LogDetCMI	$\log \frac{\det(I - S_{\mathcal{P}}^{-1} S_{\mathcal{P}, \mathcal{Q}} S_{\mathcal{Q}}^{-1} S_{\mathcal{P}, \mathcal{Q}}^{T})}{\det(I - S_{\mathcal{A} \cup \mathcal{P}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, Q} S_{\mathcal{Q}}^{-1} S_{\mathcal{A} \cup \mathcal{P}, Q}^{T})}$

- $\max_{\mathcal{A}\subseteq\mathcal{U},|\mathcal{A}|\leq B}I_f(\mathcal{A};\mathcal{I}|\mathcal{O})$
- Selects a pure and core set of examples by maximizing the distance coverage on the entire unlabeled data and jointly minimizing the distance coverage to the already labeled OOD data
- → Focus on **increasing purity of a query set** by effectively filtering out OOD examples

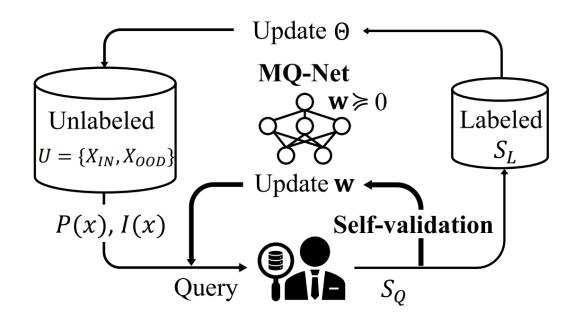
Purity-Informativeness Dilemma

"Should we focus on the purity throughout the entire AL period?"



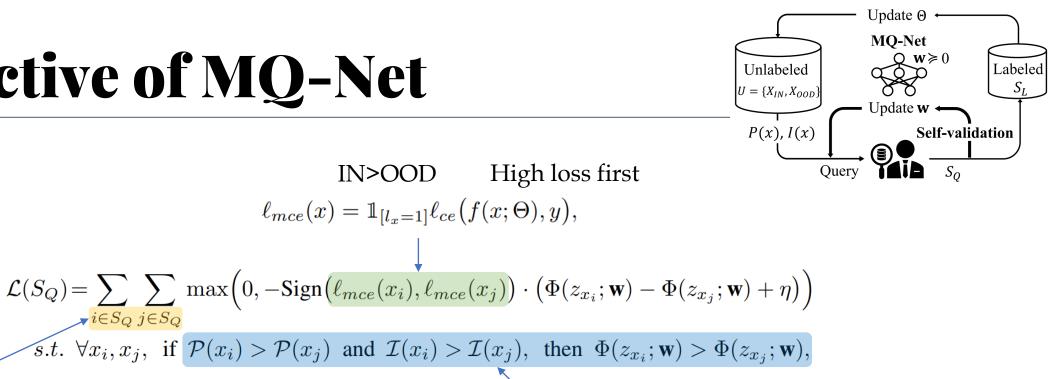
- Increasing Purity ↔ Losing Informativeness → Trade-off!
- The optimal trade-off changes according to AL rounds & noise ratios!

Meta-query-net (MQ-Net)



- To find the **best balance** between *purity* and *informativeness*
- Learns a meta query-score function $\Phi(z_x; w)$
- Uses each round's **query set** as a **self-validation** set
- Can incorporate most existing AL scores and OOD scores

Objective of MQ-Net



From a query set S_0 (*unseen* for θ)

Skyline regularization (to preserve order dominance w.r.t purity & informativeness)

- **Pairwise ranking loss** according to the masked cross entropy
- Output priority: 1) Informative IN examples first and 2) IN examples > OOD examples
- Stable optimization with *skyline regularization*

Architecture of MQ-Net

Theorem 4.1. For any MLP meta-model w with non-decreasing activation functions, a meta-score function $\Phi(z; w) : \mathbb{R}^d \to \mathbb{R}$ holds the skyline constraints if $w \succeq 0$ and $z (\in \mathbb{R}^d) \succeq 0$, where \succeq is the component-wise inequality.

 $\forall x_i, x_j, \text{ if } \mathcal{P}(x_i) > \mathcal{P}(x_j) \text{ and } \mathcal{I}(x_i) > \mathcal{I}(x_j), \text{ then } \Phi(z_{x_i}; \mathbf{w}) > \Phi(z_{x_j}; \mathbf{w}),$

- Non-negative weights MLP
 - > Preserving order dominance between two examples w.r.t. purity and informativeness
 - > Being attributed to the properties of non-decreasing activation functions
 - [Implementation] Applying a ReLU function for each parameters w (=differentiable)
- → Achieve the skyline constraint without any complex loss-based regularization!

Active Learning with MQ-Net

Meta-input Conversion

Can incorporate any
 AL score Q(x) and OOD score O(x)

- $P(x) = \exp(\operatorname{Normalize}(-O(x)))$
- I(x) = Exp(Normalize(Q(x)))

Overall Procedure

Algorithm 1	AL Procedure with MQ-Net
INPUT: S_L : 1	abeled set, U : unlabeled set, r : number of rounds,
Θ: param	eters of target model, w: parameters of MQ-Net
OUTPUT: Fin	hal target model Θ_*
1: $\Theta_1, \mathbf{w}_1 \in$	 Initialize the network parameters;
2: for $r = 1$	to r do
3: /* Trai	ning the target model $\Theta^*/$
4: $\Theta_* \leftarrow$	$TrainingClassifier(S_L, \Theta_1)$
5: /* Que	erying for the budget b */
6: $S_Q \leftarrow$	Ø;
7: while	$C(S_Q) \le b \operatorname{do}$
8: S_Q	$\leftarrow S_Q \cup \arg\min(\Phi(U; \mathbf{w}));$
9: $S_L \leftarrow$	$S_L \cup S_Q; U \leftarrow U - S_Q;$
10: /* Trai	ning the meta-score function $\Phi */$
11: for t =	= 1 to meta-train-steps do
12: Drav	w a mini-batch \mathcal{M} and from S_Q ;
13: W_{t+}	$\mathbf{w}_{t} \leftarrow \mathbf{w}_{t} - \alpha \nabla_{\mathbf{w}_{t}} \left(\mathcal{L}_{meta}(\mathcal{M}) \right);$
14: return Θ	

11

Experiments

• On three datasets (CIFAR10, CIFAR100, ImageNet50) with varying noise ratios (10%, 20%, 40%, 60%)

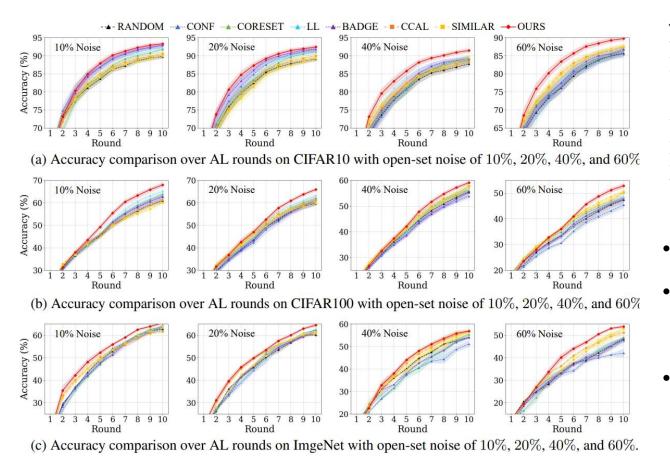


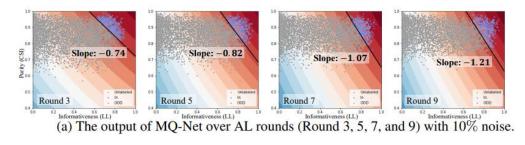
Table 1: Last test accuracy (%) at the final round for CIFAR10, CIFAR100, and ImageNet.

Datasets CIFAR10 (4:6 split)		CIFAR100 (40:60 split)			ImageNet (50:950 split)								
Nois	e Ratio	10%	20%	40%	60%	10%	20%	40%	60%	10%	20%	40%	60%
	CONF	92.83	91.72	88.69	85.43	62.84	60.20	53.74	45.38	63.56	62.56	51.08	45.04
Standard	CORESET	91.76	91.06	89.12	86.50	63.79	62.02	56.21	48.33	63.64	62.24	55.32	49.04
AL	LL	92.09	91.21	89.41	86.95	65.08	64.04	56.27	48.49	63.28	61.56	55.68	47.3
	BADGE	92.80	<u>91.73</u>	89.27	86.83	62.54	61.28	55.07	47.60	<u>64.84</u>	61.48	54.04	47.80
Open-set	CCAL	90.55	89.99	88.87	87.49	61.20	61.16	<u>56.70</u>	50.20	61.68	60.70	<u>56.60</u>	51.16
AL	SIMILAR	89.92	89.19	88.53	87.38	60.07	59.89	56.13	50.61	63.92	61.40	56.48	52.84
Proposed	MQ-Net	93.10	92.10	91.48	89.51	66.44	64.79	58.96	52.82	65.36	63.08	56.95	54.11
% improve	over 2nd best	0.32	0.40	2.32	2.32	2.09	1.17	3.99	4.37	0.80	1.35	0.62	2.40
% improve	over the least	3.53	3.26	3.33	4.78	10.6	8.18	9.71	16.39	5.97	3.92	11.49	20.14

- MQ-Net achieves the **best accuracy** for all datasets
- MQ-Net is the most **robust** to any noise ratios
- In conclusion, MQ-Net finds the best trade-off between purity and informativeness

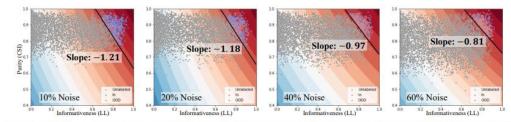
Takeaway & Ablation Studies

1. When the AL round progresses,



Purity (early) \rightarrow Informativeness (late)

2. When the noise ratio increases,



(b) The final round's output of MQ-Net with varying noise ratios (10%, 20%, 40%, and 60%).

Informativeness (small) \rightarrow Purity (high)

Table 2: Effect of the meta inputs	to MQ-Net.
------------------------------------	------------

Dat	CIFAR10 (4:6 split)					
Noise Ratio		10%	20%	40%	60%	
Standard AL	BADGE	92.80	91.73	89.27	86.83	
Open-set AL	CCAL	90.55	89.99	88.87	87.49	
	CONF-ReAct	93.21	91.89	89.54	87.99	
	CONF-CSI	93.28	92.40	91.43	89.37	
MQ-Net	LL-ReAct	92.34	91.85	90.08	88.41	
	LL-CSI	93.10	92.10	91.48	89.51	

Table 3: Efficacy of the self-validation set.

Da	taset	(CIFAR10	(4:6 split	.)
Noise Ratio		10%	20%	40%	60%
MQ-Net	Query set	93.10	92.10	91.48	89.51
	Random	92.10	91.75	90.88	87.65

Table 4: Efficacy of the skyline constraint.

		10%	20%	40%	60%
	w/ skyline w/o skyline	93.10	92.10	91.48	89.51
MQ-Net	w/o skyline	87.25	86.29	83.61	81.67

THANK YOU Any Question?