

Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing

NeurIPS 2022

Yonggan Fu, Yang Zhang, Kaizhi Qian, Zhifan Ye,

Zhongzhi Yu, Cheng-I Lai, Yingyan (Celine) Lin

Motivation: Demanding ASR Systems

A growing demand: Deploy DNN-based Automatic
Speech Recognition (ASR) systems on mobile devices

Motivation: Demanding ASR Systems

A growing demand: Deploy DNN-based Automatic
Speech Recognition (ASR) systems on mobile devices

Challenge: The big data regime is not always possible for low-resource spoken languages

Speech SSL Models: Enable Low-resource ASR

SOTA low-resource ASR solutions: Self-supervised learning (SSL) towards rich speech representations

Wav2vec 2.0 [NeurIPS'20]

WavLM [JSTSP'22]

Speech SSL Models: Efficiency Concerns

Prohibitive complexity of speech SSL models

 Especially for multilingual/multitask speech processing due to the pretrain-then-finetune paradigm

Our Proposed S³-Router Framework

- Key idea: Self-Supervised Speech Representation Router
 - Finetune model connections on top of shared weights via optimizing language-/task-specific binary masks

Our Proposed S³-Router Framework

 Key insight: Model sparsity can be utilized to encode language-/task-specific information

- Formulation of binary mask optimization
 - Forward: Activate only top k_t elements
 - **Backward:** All elements in m_t are updated via STE

 $t\,$: The index of languages/tasks

- Formulation of binary mask optimization
 - Forward: Activate only top k_t elements
 - **Backward:** All elements in m_t are updated via STE

$$\underset{m_t}{\operatorname{arg\,min}} \sum_{(x_t, y_t) \in D_t} \ell_t(f(m_t \odot \theta_{SSL}, x_t), y_t) \quad s.t. \ ||m_t||_0 \leqslant k_t$$

Apply language-/task-specific binary masks **Sparsity constraint**

How to initialize the binary masks?

Mask initialization

- Random initialization: *No prior is utilized*
- 😣 Weight magnitude based initialization: *Poor trainability*

Mask initialization

- Random initialization: *No prior is utilized*
- Weight magnitude based initialization: Poor trainability
- Our Proposed Order-Preserving Random Initialization
 - Random mask values for boosted trainability
 - Maintain the orders of weight magnitudes as priors

- Discarding ≤10% weights is all you need
 - Consistently outperform the standard weight finetuning in terms of the achievable word error rate (WER)

- Discarding ≤10% weights is all you need
 - Consistently outperform the standard weight finetuning in terms of the achievable word error rate (WER)

For example, a 2.34% WER reduction achieved at a 8% sparsity ratio on wav2vec2-base/Libri-10m

 Code
 O.03
 O.04
 O.05
 O.06
 O.07
 O.08
 O.09
 O.02
 O.03
 O.04
 O.03
 O.04
 O.05
 O.06
 O.07
 O.08
 O.09
 O.02
 O.03
 O.04
 O.05
 O.06
 O.07
 O.08
 O.09
 O.03
 O.04
 O.05
 O.06
 O.07
 O.08
 O.09
 O.03
 O.04
 O.05
 O.06
 O.07
 O.08
 O.09
 O.03
 O.04
 O.05
 O.06
 <th

- Discarding ≤10% weights is all you need
 - Consistently outperform the standard weight finetuning in terms of the achievable word error rate (WER)

Key Insight: Tuning model connections instead of weights can reduce overfitting on low-resource speech

 2 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.09
 0.05
 0.06
 0.07
 0.08
 0.09
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.09
 0.05
 0.06
 0.07
 0.08
 0.09
 0.05
 0.08
 0.09
 0.09
 0.09
 0.05
 0.08
 0.09
 <

- Discarding ≤10% weights is all you need
 - Consistent phoneme error rate (PER) reductions over standard weight finetuning for *cross-lingual transfer*
 - Setup: Finetune wav2vec2-base on CommonVoice

Language	Dutch	Mandarin	Spanish	Tatar	Russian
Weight ft	19.82	26.67	13.86	11.14	17.05
S ³ -Router	18.51	26.10	13.37	10.94	16.33
Language	Italian	Kyrgyz	Turkish	Swedish	France
Weight ft	19.27	13.41	15.70	20.81	19.35
S ³ -Router	18.29	12.30	14.82	19.64	17.94

- Discarding ≤10% weights is all you need
 - Consistent phoneme error rate (PER) reductions over standard weight finetuning for *cross-lingual transfer*
 - Setup: Finetune wav2vec2-base on CommonVoice

	Language	Dutch	Mandarin	Spanish	Tatar	Russian	
	TT7-:-1-4 f 4	10.00	06 67	1200	11 1 /	17 05	
	Boost Multi	ilingual i	Efficiency: S	³ -Router	can simu	Itaneously	
su	pport afore	ementio	ned 11 lang	uages wit	: <mark>h -88.5</mark> %	paramete	rs
	Weight ft S ³ -Router	19.27 18.29	13.41 12.30	15.70 14.82	20.81 19.64	19.35 17.94	

S³-Router's App. 2: A SOTA Pruning Scheme

• **Observation:** Achieve better or comparable pruning effectiveness over SOTA ASR pruning techniques

For example, a 6.46% lower WER over PARP [NeurIPS'21] under a sparsity ratio of 70% with only 10min labeled data

S³-Router's App. 3: Analyze Speech SSL Models

- How is the learned masks correlated to phonetics?
 - Visualize the correlation between the mask similarity and the phonetic similarity of different languages

S³-Router can be utilized to analyze the encoded phonetic differences between languages from speech SSL models' views

S³-Router's App. 3: Analyze Speech SSL Models

- How is the learned masks correlated to phonetics?
 - Visualize the correlation between the mask similarity and the phonetic similarity of different languages

Much more experiments are provided in our paper!

Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing

NeurIPS 2022

The work is supported by the National Science Foundation (NSF) through the CCRI program and an IBM faculty award.

